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ABSTRACT
Software Heritage is the largest existing public archive of software
source code and accompanying development history. It spans more
than five billion unique source code files and one billion unique com-
mits, coming from more than 80 million software projects. These
software artifacts were retrieved from major collaborative devel-
opment platforms (e.g., GitHub, GitLab) and package repositories
(e.g., PyPI, Debian, NPM), and stored in a uniform representation
linking together source code files, directories, commits, and full
snapshots of version control systems (VCS) repositories as observed
by Software Heritage during periodic crawls. This dataset is unique
in terms of accessibility and scale, and allows to explore a number of
research questions on the long tail of public software development,
instead of solely focusing on “most starred” repositories as it often
happens.
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1 INTRODUCTION
Analyses of software development history have historically focused
on crawling specific “forges” [18] such as GitHub or GitLab, or
language specific package managers [5, 14], usually by retrieving
a selection of popular repositories (“most starred”) and analyzing
them individually. This approach has limitations in scope: (1) it
works on subsets of the complete corpus of publicly available soft-
ware, (2) it makes cross-repository history analysis hard, (3) it makes
cross-VCS history analysis hard by not being VCS-agnostic.

The Software Heritage project [6, 12] aims to collect, preserve
and share all the publicly available software source code, together
with the associated development history as captured by modern
VCSs [17]. In 2019, we presented the Software Heritage Graph
Dataset, a graph representation of all the source code artifacts
archived by Software Heritage [16]. The graph is a fully dedupli-
catedMerkle dag [15] that contains the source code files, directories,
commits and releases of all the repositories in the archive.
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The dataset captures the state of the Software Heritage archive
on September 25th 2018, spanning a full mirror of Github and
GitLab.com, the Debian distribution, Gitorious, Google Code, and
the PyPI repository. Quantitatively it corresponds to 5 billion unique
file contents and 1.1 billion unique commits, harvested from more
than 80 million software origins (see Section C for detailed figures).

We expect the dataset to significantly expand the scope of soft-
ware analysis by lifting the restrictions outlined above: (1) it pro-
vides the best approximation of the entire corpus of publicly avail-
able software, (2) it blends together related development histories
in a single data model, and (3) it abstracts over VCS and package
differences, offering a canonical representation (see Section C) of
source code artifacts.

2 RESEARCH QUESTIONS AND CHALLENGES
The dataset allows to tackle currently under-explored research
questions, and presents interesting engineering challenges. There
are different categories of research questions suited for this dataset.

• Coverage: Can known software mining experiments be
replicated when taking the distribution tail into account?
Is language detection possible on an unbounded number of
languages, each file having potentially multiple extensions?
Can generic tokenizers and code embedding analyzers [7]
be built without knowing their language a priori?

• Graph structure: How tightly coupled are the different
layers of the graph? What is the deduplication efficiency
across different programming languages? When do contents
or directories tend to be reused?

• Cross-repository analysis: How can forking and duplica-
tion patterns inform us on software health and risks? How
can community forks be distinguished from personal-use
forks? What are good predictors of the success of a commu-
nity fork?

• Cross-origin analysis: Is software evolution consistent
across different VCS? Are there VCS-specific development
patterns? How does a migration from a VCS to another af-
fect development patterns? Is there a relationship between
development cycles and package manager releases?

The scale of the dataset makes tackling some questions also an
engineering challenge: the sheer volume of data calls for distributed
computation, while analyzing a graph of this size requires state of
the art graph algorithms, being on the same order of magnitude as
WebGraph [8, 9] in terms of edge and node count.
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Appendix A FIGURES
The dataset contains more than 11B software artifacts, as shown in
Figure 1.

Table # of objects
origin 85 143 957
snapshot 57 144 153
revision 1 125 083 793
directory 4 422 303 776
content 5 082 263 206

Figure 1: Number of artifacts in the dataset

Appendix B AVAILABILITY
The dataset is available for download from Zenodo [16] in two
different formats (≈1 tb each):

• a Postgres [19] database dump in csv format (for the data)
and ddl queries (for recreating the DB schema), suitable for
local processing on a single server;

• a set of Apache Parquet files [2] suitable for loading into
columnar storage and scale-out processing solutions, e.g.,
Apache Spark [20].

In addition, the dataset is ready to use on two different distributed
cloud platforms for live usage:

• on Amazon Athena, [1] which uses PrestoDB to distribute
SQL queries.

• on Azure Databricks; [3] which runs Apache Spark and
can be queried in Python, Scala or Spark SQL.

Appendix C DATA MODEL
The Software Heritage Graph Dataset exploits the fact that source
code artifacts aremassively duplicated across hosts and projects [12]
to enable tracking of software artifacts across projects, and reduce
the storage size of the graph. This is achieved by storing the graph
as a Merkle directed acyclic graph (DAG) [15]. By using persistent,
cryptographically-strong hashes as node identifiers [11], the graph
is deduplicated by sharing all identical nodes.

As shown in Figure 2, the Software Heritage DAG is organized
in five logical layers, which we describe from bottom to top.

Contents (or “blobs”) form the graph’s leaves, and contain the
raw content of source code files, not including their filenames
(which are context-dependent and stored only as part of directory
entries). The dataset contains cryptographic checksums for all con-
tents though, that can be used to retrieve the actual files from any
Software Heritage mirror using a Web api1 and cross-reference
files encountered in the wild, including other datasets.

Directories are lists of named directory entries. Each entry can
point to content objects (“file entries”), revisions (“revision entries”),
or other directories (“directory entries”).

Revisions (or “commits”) are point-in-time captures of the entire
source tree of a development project. Each revision points to the
root directory of the project source tree, and a list of its parent
revisions.
1https://archive.softwareheritage.org/api/

Figure 2: Data model: a uniform Merkle DAG containing
source code artifacts and their development history

Releases (or “tags”) are revisions that have been marked as
noteworthy with a specific, usually mnemonic, name (e.g., a ver-
sion number). Each release points to a revision and might include
additional descriptive metadata.

Snapshots are point-in-time captures of the full state of a project
development repository. As revisions capture the state of a single
development line (or “branch”), snapshots capture the state of all
branches in a repository and allow to deduplicate unmodified forks
across the archive.

Deduplication happens implicitly, automatically tracking byte-
identical clones. If a file or a directory is copied to another project,
both projects will point to the same node in the graph. Similarly for
revisions, if a project is forked on a different hosting platform, the
past development history will be deduplicated as the same nodes
in the graph. Likewise for snapshots, each “fork” that creates an
identical copy of a repository on a code host, will point to the same
snapshot node. By walking the graph bottom-up, it is hence possible
to find all occurrences of a source code artifact in the archive (e.g.,
all projects that have ever shipped a specific file content).

The Merkle dag is encoded in the dataset as a set of relational
tables. In addition to the nodes and edges of the graph, the dataset
also contains crawling information, as a set of triples capturing
where (an origin url) and when (a timestamp) a given snapshot has
been encountered. A simplified view of the corresponding database
schema is shown in Figure 3; the full schema is available as part of
the dataset distribution.

https://archive.softwareheritage.org/api/
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content

revisions

directoriessnapshots

origins

releases

content

sha1 sha1   

sha1_git sha1_git   

length bigint   

directory

id sha1_git   

dir_entries bigint[]   

file_entries bigint[]   

rev_entries bigint[]   

directory_entry_dir

id bigserial   

target sha1_git   

name unix_path   

perms file_perms   

directory_entry_file

id bigserial   

target sha1_git   

name unix_path   

perms file_perms   

directory_entry_rev

id bigserial   

target sha1_git   

name unix_path   

perms file_perms   

skipped_content

sha1 sha1   

sha1_git sha1_git   

length bigint   

revision

id sha1_git   

date timestamp   

committer_date timestamp   

directory sha1_git   

message bytea   

author bigint   

committer bigint   

origin

id bigserial   

type text   

url text   

origin_visit

origin bigint   

visit bigint   

date timestamp   

snapshot_id bigint   

snapshot

object_id bigserial   

id sha1_git   

person

id bigserial   

release

id sha1_git   

target sha1_git   

date timestamp   

name bytea   

comment bytea   

author bigint   

revision_history

id sha1_git   

parent_id sha1_git   

parent_rank integer   

snapshot_branch

object_id bigserial   

name bytea   

target bytea   

target_type snapshot_target   
snapshot_branches

snapshot_id bigint   

branch_id bigint   

Figure 3: Simplified schema of the Software Heritage Graph Dataset and the number of artifacts in it

Appendix D SAMPLE SQL QUERIES
To further illustrate the dataset’s affordances and as motivating
examples regarding the research possibilities it opens, below are
some sample sql queries that can be executed with the dataset on
aws Athena.

Listing 1: Most frequent file name
SELECT FROM_UTF8(name , '?') AS name ,

COUNT(DISTINCT target) AS cnt

FROM directory_entry_file

GROUP BY name

ORDER BY cnt DESC

LIMIT 1;

Listing 1 shows a simple query that finds the most frequent file
name across all the revisions. The result, obtained by scanning
151gb in 3′40′′, is index.html, which occurs in the dataset 182
million times.

Listing 2: Most common commit operations
SELECT COUNT (*) AS c, word

FROM

(SELECT LOWER(REGEXP_EXTRACT(FROM_UTF8(

message), '^\w+')) AS word

FROM revision )

WHERE word != ''

GROUP BY word

ORDER BY COUNT (*) DESC LIMIT 20;

As an example of a query useful in software evolution research,
consider the Listing 2. It is based on the convention dictating that
commit messages should start with a summary expressed in the
imperative mood [13, 3.3.2.1]. Based on that idea, the query uses a
regular expression to extract the first word of each commit message
and then tallies words by frequency. By scanning 37 gb in 30′′

it gives us that commits concern the following common actions

Listing 3: Ratio of commits performed during each year’s
weekends

WITH revision_date AS

(SELECT FROM_UNIXTIME(date / 1000000) AS date

FROM revision)

SELECT yearly_rev.year AS year ,

CAST(yearly_weekend_rev.number AS DOUBLE)

/ yearly_rev.number * 100.0 AS weekend_pc

FROM

(SELECT YEAR(date) AS year , COUNT (*) AS number

FROM revision_date

WHERE YEAR(date) BETWEEN 1971 AND 2018

GROUP BY YEAR(date) ) AS yearly_rev

JOIN

(SELECT YEAR(date) AS year , COUNT (*) AS number

FROM revision_date

WHERE DAY_OF_WEEK(date) >= 6

AND YEAR(date) BETWEEN 1971 AND 2018

GROUP BY YEAR(date) ) AS yearly_weekend_rev

ON yearly_rev.year = yearly_weekend_rev.year

ORDER BY year DESC;

ordered by descending order of frequency: add, fix, update, remove,
merge, initial, create.

sql queries can also be used to express more complex tasks. Con-
sider the research hypothesis that weekend work on open source
projects is decreasing over the years as evermore development work
is done by companies rather than volunteers. The corresponding
data can be obtained by finding the ratio between revisions com-
mitted on the weekends of each year and the total number of that
year’s revisions (see Listing 3). The results, obtained by scanning
14 gb in 7′′ are inconclusive, and point to the need for further
analysis.

Listing 4: Average number of a revision’s parents
SELECT AVG(fork_size)

FROM (SELECT COUNT (*) AS fork_size

FROM revision_history

GROUP BY parent_id );
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Listing 5: Average size of the most popular file types
SELECT suffix ,

ROUND(COUNT (*) * 100 / 1e6) AS Million_files ,

ROUND(AVG(length) / 1024) AS Average_k_length

FROM

(SELECT length , suffix

FROM

-- File length in joinable form

(SELECT TO_BASE64(sha1_git) AS sha1_git64 , length

FROM content ) AS content_length

JOIN

-- Sample of files with popular suffixes

(SELECT target64 , file_suffix_sample.suffix AS suffix

FROM

-- Popular suffixes

(SELECT suffix FROM (

SELECT REGEXP_EXTRACT(FROM_UTF8(name),

'\.[^.]+$') AS suffix

FROM directory_entry_file) AS file_suffix

GROUP BY suffix

ORDER BY COUNT (*) DESC LIMIT 20 ) AS pop_suffix

JOIN

-- Sample of files and suffixes

(SELECT TO_BASE64(target) AS target64 ,

REGEXP_EXTRACT(FROM_UTF8(name),

'\.[^.]+$') AS suffix

FROM directory_entry_file TABLESAMPLE BERNOULLI (1))

AS file_suffix_sample

ON file_suffix_sample.suffix = pop_suffix.suffix)

AS pop_suffix_sample

ON pop_suffix_sample.target64 = content_length.sha1_git64)

GROUP BY suffix

ORDER BY AVG(length) DESC;

The provided dataset forms a graph, which can be difficult query
with sql. Therefore, questions associated with the graph’s charac-
teristics, such as closeness, distance, and centrality, will require the
use of other methods, like Spark (see Section E). Yet, interesting
metrics can be readily obtained by limiting scans to specific cases,
such as merge commits. As an example, Listing 4 calculates the
average number of parents of each revision (1.088, after scanning
23 gb in 22′′) by grouping revisions by their parent identifier. Such
queries can be used to examine in depth the characteristics of merge
operations.

Although the performance of Athena can be impressive, there
are cases where the available memory resources will be exhausted
causing an expensive query to fail. This typically happens when
joining two equally large tables consisting of hundreds of mil-
lions of records. This restriction can be overcome by sampling
the corresponding tables. Listing 5 demonstrates such a case. The
objective here is to determine the modularity at the level of files
among diverse programming languages, by examining the size
of popular file types. The query joins two 5 billion row tables:
the file names and the content metadata. To reduce the number
of joined rows a 1% sample of the rows is processed, thus scan-
ning 317 gb in 1′20′′. The order of the resulting language files
(JavaScript>C>C++>Python>php>C#> Ruby) hints that, with the
exception of JavaScript, languages offering more abstraction facili-
ties are associated with smaller source code files.

Appendix E SPARK USAGE
For a more fine-grained control of the computing resources, it is
also possible to use the dataset on Spark, through a local install or
using the public dataset on Azure Databricks.

Once the tables are loaded in Spark, the query in Listing 6 can
be used to generate an outdegree distribution of the directories.

Listing 6: Outdegree distribution of directories
%sql

select degree , count (*) from (

select source , count (*) as degree from (

select hex(source) as source ,

hex(target) as dest from (

select id as source ,

explode(dir_entries) as dir_entry

from directory)

inner join directory_entry_file

on directory_entry_file.id = dir_entry

)

group by source

)

group by degree

order by degree

To analyze the graph structure, the GraphFrames library [10] can
also be used to perform common operations on the graph. Listing 7
demonstrates how one can load the edges and nodes of the revision
tables as a GraphFrame object, then compute the distribution of
the connected component sizes in this graph.

Listing 7: Connected components of the revision graph
from graphframes import GraphFrame

revision_nodes = spark.sql("SELECT id FROM revision")

revision_edges = spark.sql("SELECT id as src , parent_id as dst "

"FROM revision_history")

revision_graph = GraphFrame(revision_nodes , revision_edges)

revision_cc = revision_graph.connectedComponents ()

distribution = (revision_cc.groupby (['component ']). count()

.withColumnRenamed('count ', 'component_size ')

.groupby (['component_size ']). count ())

display(distribution)

By allowing users to choose the amount of resources in the
cluster, Spark lifts the constraints imposed by limits in Athena,
such as timeouts and limited scale-out factor. This is important for
computationally intensive experiments or very large join operations,
which can only be achieved through sampling in Athena.

Spark is also more flexible in terms of the computations it can
perform, thanks to User-Defined Functions [4] that can be used to
specify arbitrary operations to be performed on the rows, which
isn’t possible with Athena.

Appendix F DATA SAMPLE
A sample of the data as well as instructions to run live queries on
the dataset using Amazon Athena can be found at: https://annex.
softwareheritage.org/public/dataset/graph/2018-09-25/

https://annex.softwareheritage.org/public/dataset/graph/2018-09-25/
https://annex.softwareheritage.org/public/dataset/graph/2018-09-25/
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