
Project Title Fostering FAIR Data Practices in Europe

Project Acronym FAIRsFAIR

Grant Agreement No 831558

Instrument H2020-INFRAEOSC-2018-4

Topic INFRAEOSC-05-2018-2019 Support to the EOSC Governance

Start Date of Project 1st March 2019

Duration of Project 36 months

Project Website www.fairsfair.eu

M2.15 A​SSESSMENT​ ​REPORT​ ​ON​ ‘FAIRness of
software’

Work Package WP2​- FAIR practices: semantics, interoperability and services

Lead Author (Org) Morane Gruenpeter (INRIA)

Contributing Author(s) (Org) Roberto Di Cosmo (INRIA), Hylke Koers (SURF), Patricia Herterich
(DCC), Rob Hooft (DTL), Jessica Parland-von Essen (CSC), Jonas Tana
(CSC), Tero Aalto (CSC), Sarah Jones (DCC)

Due Date 30.09.2020

Date 16.10.2020

Version 1.1

DOI https://doi.org.10.5281/zenodo.4095091

Dissemination Level
X PU: Public

PP: Restricted to other programme participants (including the Commission)
RE: Restricted to a group specified by the consortium (including the Commission)
CO: Confidential, only for members of the consortium (including the Commission)

1

https://doi.org/10.5281/zenodo.4095091

Abstract

Software has an important place in academia and as such it has an important place in the FAIR
ecosystem. Software can be used throughout the research process; however it can also be an
outcome of the research process. Distinguishing between these different roles is essential for
any assessment of the `FAIRness of software’.

This is the first milestone of the FAIRsFAIR project focused specifically on software as a digital
object. In this report we discuss the state-of-the-art of software in the scholarly ecosystem in
general and in the FAIR literature in particular. We identify the challenges of different
stakeholders when it comes to finding and reusing software. Furthermore, we present an
analysis of nine resources that call for the recognition of software in academia and that present
guidelines or recommendations to improve its status - either by becoming more FAIR or by
improving the curation of software in general. With this analysis we demonstrate to what
extent each of the FAIR principles is seen as relevant, achievable and measurable; and in what
sense it benefits software artifacts. Finally, we present 10 high-level recommendations for
organizations that seek to define FAIR principles or other requirements for research software in
the scholarly domain.

Versioning and contribution history

Version Date Authors Notes

0.3 21.7.2020 Morane Gruenpeter and all
contributing authors

Main structure and content description

0.4 18.8.2020 Morane Gruenpeter and all
contributing authors

First draft for T2.4 review- methodology
for the analysis of the literature

0.5 1.9.2020 Morane Gruenpeter and all
contributing authors

0.6 9.9.2020 Morane Gruenpeter and all
contributing authors

Software in the FAIR ecosystem
specified and FAIR analysis completed

0.7 15.9.2020 Morane Gruenpeter and all
contributing authors

Updated introduction

Complete summary of finding and
recommendations rational

0.8 24.9.2020 Morane Gruenpeter and all
contributing authors

Added full analysis table

Updated recommendations

Draft for internal review

0.9 29.9.2020 Morane Gruenpeter and all
contributing authors

Draft for PCO

2

1.0 30.9.2020 Morane Gruenpeter and all
contributing authors

Shared 1.0 version on FAIRsFAIR archive

1.1 16.10.2020 Morane Gruenpeter, all
contributing authors and
experts from the FAIR4RS

Published first version on Zenodo for
community review

Disclaimer

FAIRsFAIR has received funding from the European Commission’s Horizon 2020 research and
innovation programme under the Grant Agreement no. 831558. The content of this document
does not represent the opinion of the European Commission, and the European Commission is
not responsible for any use that might be made of such content.

Abbreviations and Acronyms

ARDC Archival, Reference, Description and Credit

CURE Curating for Reproducibility

EOSC European Open Science Cloud

FAIR Findable, Accessible, Interoperable, Reusable

FAIR4RS WG FAIR for Research Software Working Group

FOSS Free and Open Source Software

FSFE Free Software Foundation Europe

PID Persistent Identifier

RDA Research Data Alliance

ReSA Research Software Alliance

SCID WG Software Source Code Identification Working Group

SCI WG Software Citation Implementation Working Group

SIRS TF Scholarly Infrastructures for Research Software Task Force

SPDX Software Package Data Exchange

SSC IG Software Source Code Interest Group

T2.4 Task 2.4 in Work Package 2: FAIR services and software

WP2 Work Package 2 in the FAIRsFAIR project: FAIR practices: semantics,
interoperability and services

3

Table of contents

1. Introduction 6

2. FAIR principles for software at the start of 2020 7

2.1 Software as part of a FAIR ecosystem 7

2.1.1 Related initiatives 9

2.1.2 Software in FAIRsFAIR 12

2.2 Do software artifacts require different FAIR principles? 12

3. Challenges 16

3.1. Software dependencies and environment - technical challenge 16

3.2 Documentation 17

3.3 Accessibility & Licensing 17

3.4 Time and skill 17

3.5 Quality control 17

3.6 Software sustainability & management plan 18

3.7 Metadata 18

4. FAIR analysis of research software guidelines 19

4.1 Methodology 20

4.2 Compendium of FAIR software analysis 22

4.3 Other insights and recommendations from the literature 22

4.4 Summary of Findings 24

5. Towards FAIRness of software 26

5.1 Existing mechanisms and components for software 26

5.1.1 Software identification 26

5.1.2 Software metadata and vocabularies 27

5.1.3 Software licenses and SPDX 28

5.1.4 Software Curation 29

4.1.5 Software artifact evaluation and badging 30

5.2 The landscape of existing infrastructures 30

5.2.1 Software archives and institutional repositories 31

5.2.2 Software journals and publishers 31

5.2.3 Software registries / indexers / aggregators 32

5.2.4 Research software training 32

6. Recommendations 32

7. Conclusion 35

4

8. Acknowledgements 36

Annex A: FAIRsFAIR Task 2.4 Statement of Work 37

Annex B: Complete analysis of software guidelines 40

B.1 Findable 40

B.2 Accessible 44

B.3 Interoperable 48

B.4 Reusable 51

Annex C: Infrastructures and existing implementations catering software 55

C.1 Software archives and institutional repositories 55

C.1.1 Software Heritage archive 55

C.1.2 Zenodo 56

C.2 Software journals and publishers 57

C.2.1 SoftwareX 57

C.2.2 Journal of Open Source Software (JOSS) 58

C.3 Software registries / indexers /aggregators 59

C.3.1 swMath 59

C.4 Research software training 60

C.4.1 The Carpentries 60

Bibliography 61

5

1. Introduction

This `​FAIRness of software ​’ assessment report is the second milestone report produced by the
FAIR services and software task (T2.4), included in the FAIR practices work package (WP2)
under the FAIRsFAIR European project. The FAIRsFAIR project’s goal is to propose solutions, 1

standards and recommendations to implement the FAIR principles in the research object’s life
cycle. Surveying the landscape of FAIR activities to create a basis for harmonization, while
identifying overlaps, divergences and challenges is a fundamental first step before proposing
solutions. Early on, T2.4 established that services and software should be assessed separately in
such an endeavour, resulting in the addition of this milestone to ensure all T2.4 objectives are
addressed. The choice to assess services and software on different tracks reflects the distinction
when it comes to software and its triple role in academia, as stated in (​Clément-Fontaine,
2019​): “Software can be a tool, similarly to services, but it has an important role as a research
result and as a research object”.

Software is essential in research for each role that it plays. Furthermore, source code has
particular importance because of the scientific knowledge and the logic of data transformation
embodied in the source code (​Di Cosmo and Zacchiroli, 2017​). With this in mind, different
stakeholders and initiatives in research have recently articulated the need to better
understand software and to include source code as a separately recognized digital object in a
`FAIR ecosystem’ (​European commision, 2018​). ​In this report we review the state-of-the-art
view of software in a `FAIR ecosystem’, through an analysis of existing literature about the FAIR
principles applied to software and guidelines or recommendations on related subjects,
including software citation, software curation and the place of software in academia. ​We also
provide high-level recommendations, using an analytical approach, to help evaluate the
adequacy of each principle with regards to software and especially to source code.

The report is organized as follows: Section 2 is an overview of the FAIR ecosystem and related
initiatives in the academic domain, trying to answer the question of whether software artifacts
require a different set of FAIR principles . Section 3 is concerned with challenges in finding and
re-using software as identified by the community, which helped us identify gaps between the
existing literature and current technical and sociological challenges. Section 4 then reviews and
analyzes the existing literature on addressing the challenges in applying the FAIR principles to
research software. Section 5 offers a panorama of infrastructures and services providing
support for research software to become (increasingly) FAIR and outlining benefits and
limitations for each solution. Finally, we end this report with a summary of findings and
recommendations to support initiatives such as the ​Research Data Alliance / Research Software

1 ​https://www.fairsfair.eu

6

https://www.fairsfair.eu/

Alliance / FORCE11 FAIR for research software working group (​FAIR4RS), which was launched in 2

June 2020 with the intention of creating a community definition of the FAIR principles for
research software.

2. FAIR principles for software at the start of 2020

The FAIR guiding principles (​Wilkinson et al. 2016​) identified the difficulties of discovering and
reusing data, and called for infrastructures to enhance the machine-actionability of their
services. This first publication, which was specifically targeted to data, also states that FAIRness
should be reached for all research objects including algorithms, tools and workflows. Since the
publication of the FAIR principles, different ​academics and working groups have published
articles suggesting that the FAIR principles as written do not naively apply to software, and
some adjustments and expansions are needed when assessing the FAIRness of software.

We describe the landscape of such efforts, here divided into two main sections:

● A top-down view of the FAIR ecosystem and the role that software plays in it, alongside
a description of the related initiatives engaging in FAIR software activities;

● A review of the current state of FAIR assessment for software, focusing on software as a
research outcome and as the object of research. Software that is used in the academic
process as a tool might be considered a service, which is detailed in the FAIRsFAIR
assessment report on FAIRness of services (​Koers et al., 2020​). In this case, the software
can be considered `FAIR enabling` checking if the service or tool is helping the data it
acts upon to become more FAIR, and not directly as a FAIR object. Note that software
that was produced as a research outcome can also be a research tool in a different
setting, for a different team for example.

2.1 Software as part of a FAIR ecosystem

A FAIR ecosystem, as described in the report ​Turning FAIR into reality ​(​European commision,
2018​), is a highly distributed ecosystem requiring technical mechanisms linking resources, and
social mechanisms to define specifications, standards and protocols. Both the FAIR guiding
principles and the report Turning FAIR into reality state that software is one type of digital
object to which the principles should apply. Nonetheless, software can be found at different
levels:

● Infrastructure components (registries, repositories, etc.) and protocols are implemented
with software;

● services are software instances that can be deployed on online platforms;

2 ​https://www.rd-alliance.org/groups/fair-4-research-software-fair4rs-wg

7

https://www.rd-alliance.org/groups/fair-4-research-software-fair4rs-wg
https://www.rd-alliance.org/groups/fair-4-research-software-fair4rs-wg

● during the research process, software can be used as a tool, with or without
modifications;

● the research process can yield a software outcome;
● software source code can play the same role as a dataset that can be observed,

analyzed and re-used.
In this report we focus on software representing a research outcome.

In the FAIRsFAIR document “FAIR Ecosystem Components: Vision” (​L’Hours & Von Stein, 2020​) a
diagram for the ecosystem components is presented to better understand the relations
between infrastructure, objects and actors. Figure 1 shows a modified version of the FAIR
ecosystem diagram with the added software icon (</>). We see that software, in the purple
rectangle, has a place of its own in the ecosystem. However, software has a place in multiple
layers, depending on the purpose it serves. To illustrate this idea, we added the software icon
where software may be relevant.

Figure 1: FAIR vision: Ecosystem components, to highlight the software roles in the
Ecosystem, the symbol </> was added (Original diagram 3 from ​L’Hours & Von Stein, 2020 ​)

Software is all around us, with a majority of it developed outside of academia in industry and

developer communities (​RDA/FORCE11 Software Source Code Identification WG​, 2020​). In this
report we address software both developed and used in academia. We do not attempt to
define research software, instead use resources where research software is defined and where

8

the FAIR principles are interpreted specifically for research software. Furthermore, software is a
complex object and different aspects must be taken into account; its usage, size, life span,
structure, authorship, community around it, and the authority over the software (Alliez et al.,
2019). We propose to keep these aspects in mind when reviewing software projects and
assessing software artifacts as FAIR digital objects.

2.1.1 Related initiatives

Many different initiatives have undertaken the challenge of making software a first class citizen
in the scholarly ecosystem. These initiatives’ main objectives are to establish recognition of
software as a research output and to improve research reproducibility which can include
software. One of the themes coming back in these initiatives is the question of the applicability
of the FAIR principles to software. In the following paragraphs we will detail these initiatives
with their background and goals:

● The Research Data Alliance (RDA) Software Source Code IG (SSC IG) was founded in 3

2017, after a Birds of a Feather (BoF) session at the 9th RDA Plenary in spring of that
year. It discusses issues of identification, management, sharing, discovery, archiving and
provenance of software source code, reviewing and revising metadata for describing
and discovering source code, developing guidelines for managing, describing and
publishing software source code, collecting and publishing use cases of current
examples and practices, and contributing software related expertise to other groups in
the RDA which have a software aspect.
In the SSC IG sessions, two RDA working groups were discussed and created: the
Software source Code Identification Working Group [SCID] WG (also a FORCE11 WG) 4

and the FAIR for research software [FAIR4RS] WG (also a working group of FORCE11 and
a collaboration with ReSA). 5

● The SCID was launched in March 2019 to collect and discuss use cases involving
software source code identification with the intention of understanding and capturing
the landscape and coming to a consensus, since many identifier schemes for software,
including both intrinsic and extrinsic identifiers, exist. The WG output was published for
community review in July 2020. The WG output is a collection of use cases and 6

identifier schemes that are relevant for software source code identification as well as a
summary analyzing these findings. This was a necessary first step before making any

3 Research Data Alliance (RDA): ​https://www.rd-alliance.org/
4 FORCE11 : ​https://www.force11.org/
5 Research Software Alliance (ReSA): ​https://www.researchsoft.org/
6 ​https://doi.org/10.15497/RDA00053

9

https://www.rd-alliance.org/
https://www.force11.org/
https://www.researchsoft.org/
https://doi.org/10.15497/RDA00053

recommendations that might be only applied in the scholarly ecosystem and might be
detached from the case of software in industry.

● FAIR4RS was launched at the end of June 2020 and aims to define the FAIR principles for
research software with community support. The working group will produce guidelines
on how to apply the FAIR principles for research software (based on existing
frameworks) and adoption examples. This is the seminal work in the area, with
initiatives such as the EOSC FAIR WG recognising this as the community forum for taking
forward the FAIR principles for software, services and workflows. 7

During the summer of 2020, the working group formed four different subgroups
with the following goals:

❖ Subgroup 1: "A fresh look at FAIR for Research Software" will examine
the FAIR principles in the context of research software from scratch, not
based on pre-existing work.

❖ Subgroup 2: “FAIR work in other contexts” will examine efforts to apply
FAIR principles to different forms including workflows, notebooks and
training material, to provide insights for the definition and
implementation of FAIR principles for research software.

❖ Subgroup 3: “Definition of research software” will review existing
definitions of research software and will specify the scope for the WG
outputs.

❖ Subgroup 4: “Review of new research related to FAIR Software” will
review new research around FAIR software that has come out since the
release of the Towards FAIR principles for research software paper
10.5281/zenodo.3904139​ (​Lamprecht et al., 2019​) in August 2019.

● The CURE & FAIR working group is a new RDA working group that was created after a 8

BoF session at P14: Curating for FAIR and Reproducible Data and Code. The abbreviation
CURE stands for Curating for Reproducibility . The working group's goal is to establish 9

guidelines and standards to promote curated, reproducible and FAIR data and code.

● The Software Citation Implementation Working Group (SCIWG) is a FORCE11 initiative, 10

building on the Software Citation Working Group, which published the software citation
principles (​Smith et al. 2016 ​). It started in 2017 with the following goals:

○ Endorse the software citation principles

7 ​10.5281/zenodo.3904139
8 ​https://www.rd-alliance.org/groups/cure-fair-wg
9 ​https://osf.io/f4jtb/
10 ​https://www.force11.org/group/software-citation-implementation-working-group

10

https://docs.google.com/document/d/1VKbI29Dc5jHhkVGZkUTD-L8lUeqJllvsSJiNeurjc6k/edit#
https://doi.org/10.5281/zenodo.3904139
https://doi.org/10.5281/zenodo.3904139
https://www.rd-alliance.org/groups/cure-fair-wg
https://osf.io/f4jtb/
https://www.force11.org/group/software-citation-implementation-working-group

○ Propose guidelines on how to implement the principles (depending on the
stakeholder)

○ Promote the implementation of the principles
○ Test implementations of the principles.

Citation and FAIR are closely related; FAIR objects with rich metadata and persistent
identifiers provide all elements needed for a citation and the incentive of being cited
might encourage researchers to spend effort on making their outputs FAIR. But there
are key differences too, as citations are also meant to provide credit to the authors of
software, which is a creation of human ingenuity, and falls under copyright law, unlike
most datasets. Hence, proper attribution of research software, which falls squarely out
of the core objectives of the FAIR movement, is of paramount importance. World class
research institutions in Computer Science have been handling these issues internally for
decades, and recently efforts have been made to share widely the lessons learned, for
example by the software citation working group at Inria (​Alliez et al. 2019 ​).
Considerable effort has been spent over the past few years to discuss the many complex
issues related to software citation - that involve proper identification, description and
attribution of software artifacts - but while there is agreement about the importance of
software citation in general, there is not yet a formal, globally accepted standard on
how software should be cited. Difficulties and challenges of software citation are
described in the SCIWG output: Software Citation Implementation Challenges (​Katz et
al., 2019​). As an example of how far this issue is from being solved, we remark that only
in May 2020 a bibliographic style for software artifact, ​biblatex-software was 11

made available for users of the ​biblatex bibliography processing tool included in the
popular LaTeX system for research articles (​Di Cosmo, 2020​), and is only now starting to
be included in standard publication formats (see for example the ​Journal of Theoretical,

Computational and Applied Mechanics ​ ​https://jtcam.episciences.org/page/for-authors ​).

● In June 2020, the EOSC Architecture Working Group launched a task force on Scholarly
Infrastructures for Research Software (SIRS), with the goal to survey the existing
practices of infrastructure that deal with research software, from archives to publishers
to catalogs, and make recommendations for building a lean architecture of
infrastructures supporting Open Science. Interestingly, this work leverages an
alternative approach for looking at research software, based on the identification of the
functionalities that an infrastructure should provide, namely Archival, Reference,
Description and Credit, or ARDC.

11 ​https://www.ctan.org/tex-archive/macros/latex/contrib/biblatex-contrib/biblatex-software

11

https://jtcam.episciences.org/page/for-authors
https://www.ctan.org/tex-archive/macros/latex/contrib/biblatex-contrib/biblatex-software

2.1.2 Software in FAIRsFAIR

The work being undertaken in FAIRsFAIR Task 2.4 aims to capture the panorama of existing

frameworks and documents addressing specifically software and evaluate the applicability of

the FAIR principles to software, or related concepts to software.

Software has an evident place in the research lifecycle as a tool, but more importantly it can be
a conclusive result of the research process. Software is part of the academic domain in many
different disciplines. As such, it is fundamental to consider its curation and preservation by
applying a set of guidelines to insure quality curation.
The FAIR principles are a good candidate to apply to software artifacts as they are also digital
objects, however it is still unclear to what extent the principles as written are suited to
software. Different academics and initiatives have addressed this question from various angles,
sometimes specifically comparing the FAIR principles and sometimes addressing other quality
curation aspects.

Moreover, we aim to highlight the challenges that ​research software outcomes ​, ​software tools
and ​software objects of research ​face when considered as part of a FAIR ecosystem.
Recommendations and guidelines on how to use and implement these recommendations are
needed to improve software recognition and comprehension in a FAIR ecosystem and more
broadly in the academic community.

2.2 Do software artifacts require different FAIR principles?

Modern research relies on software, yet software is different from other research outputs due
to its nature. Therefore, digital objects requirements, as defined in the ​FAIR guiding principles ​,
might not apply to software. It is important to recognize software as complexe object whose
nature must be taken into account when producing FAIR principles for research software.
Before diving into the specific case of software artifacts, we propose a simplified summary of
the FAIR guiding principles as written for research data (​Wilkinson et al., 2016​) and presented
in Figure 2.
A ​Findable digital object is an object identified with a globally unique and persistent identifier
(PID), which is registered with a set of rich metadata in a registry. These metadata can be
searched and thus the digital object can be found. The identifier is part of the metadata record.
An Accessible digital object and its metadata can be retrieved with a standard communication
protocol, which is open and free. Authentication might be used when necessary. Metadata is
always accessible (even if the data is not).

12

An ​Interoperable digital object has metadata in a formal, shared vocabulary that is also
following the FAIR principles. It also includes references to other metadata of other digital
objects, creating links between resources.
A ​Reusable digital object has metadata with a plurality of accurate attributes, it is
published/released with a clear license for usage and associated with its provenance. Also the
metadata and digital object meet community standards.

Figure 2: Illustration of ANDS resources which reflect or crosscut the FAIR principles. Image:
ANDS . CC: BY 4.0 12

The ​Turning FAIR into reality ​ report recommends that the FAIR guiding principles should be
applied broadly (​European Commission, 2018 ​), which includes software source code, workflows
and combination of these. However, it is clear from the report’s action 16.2 that specific
tailoring of the principles is needed in order to fit other objects.

Rec. 16: Apply FAIR broadly
FAIR should be applied broadly to all objects (including metadata, identifiers, software and
DMPs) that are essential to the practice of research, and should inform metrics relating
directly to these objects.

Action 16.1: Policies must assert that the FAIR principles should be applied to research data,
to metadata, to code, to DMPs and to other relevant digital objects, as well as to policies
themselves. Stakeholders: Policymakers.

12 ​https://www.ands.org.au/working-with-data/fairdata/training

13

https://www.ands.org.au/working-with-data/fairdata/training
https://www.ands.org.au/working-with-data/fairdata/training
https://www.ands.org.au/working-with-data/fairdata/training

Action 16.2: The FAIR data principles and this Action Plan must be ​tailored for specific
contexts​ - in particular to the relevant research field - and the precise application nuanced,
while respecting the objective of maximising data accessibility and reuse. Stakeholders:
Research communities; Data service providers; Policymakers

In June 2020, the EOSC’s ‘FAIR in practice’ task force released `Six Recommendations for
Implementation of FAIR Practice` (​FAIR Practice TF, 2020​) including a full section covering the
FAIR practices for digital objects that are not research data (e.g software, services, tools and
executable notebooks). One of the recommendations emphasises the need for translating the
FAIR principles for different types of digital objects :

Recommendation n°5 : Recognise that FAIR guidelines will require translation for other digital

objects and support such efforts.

Also the French national Committee for Open Science's Free Software and Open Source Project
Group has published in 2019 the Opportunity Note ​Encouraging a wider usage of software

derived from research ​(​Clément-Fontaine, 2019 ​):

Recommendation n° 2 : Make sure ​the specific nature of software ​is recognized and not
considered as “just data” particularly in the context of discussion about the notion of FAIR
data.

Following these recommendations, a FAIR ecosystem requires special attention to software.
Software is different from data as exposed in (​Katz et al., 2016​), which in turns may require a
different FAIRification process and a different way to evaluate the FAIRness of software. 13

Moreover, the FAIRness of software depends on the role it plays in the research life cycle.
Software that is used ​as a tool and is not a research product might be considered similarly to a
service that serves the data or the research workflow. In that way this software can enable,
respect or reduce the FAIR principles for other digital objects.
Software that was ​created during the research life cycle ​as part of a research effort is a
research outcome and should have the same status as a research result (e.g., articles, theses,
books, reports, datasets, etc.) It should be citable and its authors should receive proper credit.
Lastly, software can be an object that is the subject of research ​. In this case, software is similar
to (source) data, noting that data can be both created during the research process and taken as
an input. An example for this role would be the The Mining Software Repositories (MSR) and 14

13 ​https://www.go-fair.org/fair-principles/fairification-process/
14 ​http://www.msrconf.org/

14

https://www.go-fair.org/fair-principles/fairification-process/
http://www.msrconf.org/

The International Conference of Software Engineering (ICSE) conferences, for which large sets 15

of source code are analyzed for the purpose of research.

With this distinction in mind, FAIR principles for software should be evaluated differently for
each of the three different software facets :

- As a tool,
- As a research outcome or result; and
- As the object of research.

Trying to address all three at once can impose unnecessary requirements and might ignore
fundamental aspects. Therefore, in this work we focus on software as a research outcome.

15 ​http://www.icse-conferences.org/

15

http://www.icse-conferences.org/

3. Challenges

Before exploring the application of the FAIR principles to research software in detail, we want
to recap current challenges that researchers face when trying to find or re-use software. For
this we use results from the FAIRsFAIR survey presented in D2.1 - the Report on FAIR
requirements for persistence and interoperability 2019 (​Lehväslaiho et al., 2020​). It was
conducted in the summer and fall of 2019. It included the following free text question:

What ​challenges​ do researchers in your community encounter when trying to:
A. ​find​ relevant research software on the web
B. ​re-use ​ relevant research software on the web

There were 66 answers to the survey and all the data is available on Zenodo:
10.5281/zenodo.3518922​. The participants’ identified themselves with the following roles:
research support staff(28); repository staff(19); research infrastructure operator (17);
researcher (22), policy make(5); and other(5). Note that this question was a multi-value
question and that the option research software engineer wasn’t proposed and wasn’t given as
an “other” response.

We classified the answers to the survey into six different challenges categories, which are
detailed separately:

Software dependencies and environment - technical challenge

Documentation

Accessibility & Licensing

Time and skill

Quality control

Software sustainability & management plan

3.1. Software dependencies and environment - technical challenge

The difficulty is to identify the current or desired version and which other elements
(dependencies, interpreters, libraries, etc.) are needed to understand and execute the

16

https://doi.org/10.5281/zenodo.3518922

software. The links to these elements, if they exist, can be easily broken and maintaining the
stack trace is a challenge.
A piece of software can be hardware specific and finding or emulating the hardware can be a
vast challenge. With that in mind, the operating system can be obsolete or difficult to access
(freely), which can prevent from reusing software or reproducing a software experiment.
Increasing the portability to other platforms with emulation of environments and hardware can
be a solution.

3.2 Documentation

Finding the documentation and manuals, can be a challenge when encountering software. The
level of detail on how to use, install, compile, execute or host the software depends on the
developer's skill (and time). Multiple comments in the survey reflect the notion that lack of
documentation or low levels of support make it a challenge to re-use relevant software.
There is a vital need to have a more detailed, well written documentation with examples of
workflows and usage.

3.3 Accessibility & Licensing

To access and reuse software, licensing is crucial. However many software records lack in clarity
on which license applies to a piece of software. Software is sometimes unavailable when it is
under commercial license and the source code isn’t available for inspection or when it is
provided as supplementary material of a publication which can be behind a paywall. It is also
unclear how open the license is. Moreover, there should be training to developers who release
software and to researchers that want to use software on how to consider licensing and open
source licenses.

3.4 Time and skill

Even if the software is findable, the challenge is to understand it properly so the user can install
it, use it, debug it or integrate to other existing workflows, which requires time and skill. ​With
limited time the barrier to re-use is high, and it's easy to be less motivated to redo it yourself.
Also, training is needed to help researchers or research support staff produce software
resources that are citable and FAIR.

3.5 Quality control

In the case of software quality, knowing which software is adequate, tested and maintained is
usually information that transfers with ​word of mouth. However, ​evaluation of software for
replication and reproducibility is necessary to guarantee quality of the research resources.

17

3.6 Software sustainability & management plan

Lack of a sustainability or management plan can reduce the way users can understand and
reuse software. This may be seen as lack of proper/uniform description and metadata which
should be uniformed and standardized in a management plan. It is sometimes unclear what is
the level of support and if the software is maintained. Contact information and support
information are hard to find.

3.7 Metadata

Many responses have included the lack of metadata, metadata standards or the use of loose
standards as a challenge when searching and reusing software. Metadata completeness is hard
to get when researchers do not use a standard and there is no consensus about what
information is necessary.
Also many mentioned the lack of citation which in turn reduces the chance of discovery and
reuse.

18

4. FAIR analysis of research software guidelines

In this section we review and analyze literature addressing the challenge when it comes to
applying the FAIR principles to software or related subjects, including software citation,
software curation and the place of software in academia. We collected a panorama of
perspectives, from researchers, organizations and community efforts, providing a good
comparison between the FAIR principles and existing software guidelines.
We propose a meta-analysis of each FAIR principle with a mapping including the exact citation
from all the resources that mention the principle and how to apply it to software.
We followed a methodology described below, where we evaluated the number of times the
resources referred to a FAIR principle or a similar principle that aimed for the same goals. To
the best of our knowledge, there are no established assessment frameworks to measure
software FAIRness, therefore we focus on a selection of related articles and guidelines. The
resources used for the mapping are:

1. Towards FAIR principles for research software (​Lamprecht et al., 2019​)
This article was published in the Data Science journal, issue ‘FAIR Data, Systems and
Analysis’ aiming on translating the FAIR principles to research software. Their effort is
supported with two case studies, along with recommendations for rewriting the FAIR
principles to make them more applicable to software.

2. “5 recommendations for FAIR software” from the Netherlands eScience Center and

DANS ​These are straightforward guidelines for researchers on how to make software 16

FAIR, which are available on a dedicated website to help researchers with their own
software.

3. Software citation principles (​Smith et al., 2016​)
This article published in PeerJ Computer Science is a result of the FORCE11 Software
Citation Working Group, defining high level principles on software citation.

4. RDA Software Source Code Interest Group (SSC IG) P13 activity translating FAIR

principles to software 17

This resource is an ad-hoc activity conducted during the RDA P13 SSC IG session, where
participants were asked to map the existing FAIR principles for data to possible
principles for software. Participants were asked to add items that are not in the FAIR
principles.

5. From FAIR research data toward FAIR and open research software (​Hasselbring, 2020​)
This article was published in the journal IT - Information Technology and aims at
translating the FAIR principles to research software and producing a list of
recommendations based on the FAIR principles and other resources.

6. Attributing and Referencing (Research) Software: Best Practices and Outlook From

16 ​https://fair-software.nl/
17 h​ttps://www.rd-alliance.org/rda-p13-activity-summary-applying-fair-software-dated-avril-2019

19

https://fair-software.nl/
http://www.rd-alliance.org/rda-p13-activity-summary-applying-fair-software-dated-avril-2019

Inria (​Alliez et al., 2019​) ​This article was published in IEEE ​Computing in Science &
Engineering aiming to analyze the existing practices handling research software at the
Inria research center and providing recommendations to the academic community.

7. Software vs. data in the context of citation (​Katz et al., 2016​)
This article is a PeerJ preprint, which details the differences between software and data,
and providing simple recommendations for software citation.

8. The science code manifesto (​Barnes et al., 2011​) 18

This is an online manifesto, published in 2011 by the Climate Code Foundation. It was
endorsed by 1227 researchers and organizations. It proposes five principles to reform 19

scientific software in institutions.
9. CoSO Opportunity Note: Encouraging a wider usage of software derived from research

by The Committee for Open Science's Free Software and Open Source Project Group

(​Clément-Fontaine, 2019​)
This is a committee note from the French National Open Science committee declaring
the importance of software in Open Science and formulating recommendations to
encourage and promote better practices for handling software in institutions.

4.1 Methodology

For the analysis, the ​exact text used in the original resource is included, to preserve the original
semantics and pragmatics when reviewing the differences and similarities between
translations.
At the end of each mapping, we evaluate the principle on a set of criteria, and for each we
assess whether the principle appeared in the literature and if the literature supports the criteria
on the particular principle. I​f widely referenced, this is a match. We will not seek to analyze all
atomic requirements on each principle (e.g separate unique and persistent identifiers).
The key criteria identified for the analysis and evaluation of each principle are the following:

● Relevant - is this principle seen to be relevant to software by being frequently
mentioned in the proposed resources? [without taking into account the independent
dimensions]

● Achievable​ - is this principle seen to be achievable when it comes to software?
● Measurable​ - is this principle seen to be measurable on software artifacts?
● Benefits​ - is this principle seen to be useful and benefits the software resource?

○ Quality curation of the software resource
○ Recognition of software in scholarly communications

FAIR Relevant Achievable Measurable Benefits

FAIR principle

18 ​http://sciencecodemanifesto.org/
19 Extracted on 16.9.2020 from ​http://sciencecodemanifesto.org/endorse

20

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5992
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5992
http://sciencecodemanifesto.org/
http://sciencecodemanifesto.org/endorse

Each criterium is evaluated on the following scale:

N/A doesn’t appear
(white)

* observed in a small subset
(one paper)

medium subset (2-3) * large subset (3+
papers)

! disagreeing

With this analysis, an assessment of the applicability of a principle to software artifacts can be
proposed on the path to defining the FAIR principles for research software, which in itself is out
of scope for this report. The scale provides a way to identify if the principle was seen in the
literature and if the principle’s concept was seen in a small subset, a medium subset or a large
subset. We have not found disagreeing comments on the principles, however the interpretation
of a few principles seems very different from the intentions of the original FAIR guiding
principles.

Note that the criterium “measurable” was more difficult to find in the resources and in some
cases the measurability of the principle was not commented. In some cases the resources
provided a means to achieve the requirement with slight distinctions in preference that can be
taken into account as a measurable principle.
The complete analysis is available in ​Annex B​, while the summary of the analysis is presented in
Section 4.2.

21

4.2 Compendium of FAIR software analysis

 FAIR Relev
ant

Achiev
able

Measur
able

Benefits

1 F1. (meta)data are assigned a globally unique and eternally persistent
identifier.

*** *** ** ***

2 F2. data are described with rich metadata. *** ** N/A ***

3 F3. metadata specify the data identifier. *** ** * **

4 F4. (meta)data are registered or indexed in a searchable resource. *** ** * **

5 A1 (meta)data are retrievable by their identifier using a standardized
communications protocol.

*** *** N/A ***

6 A1.1 the protocol is open, free, and universally implementable. ** ** N/A **

7 A1.2 the protocol allows for an authentication and authorization
procedure, where necessary.

N/A N/A N/A N/A

8 A2 metadata are accessible, even when the data are no longer available. ** N/A N/A *

9 I1. (meta)data use a formal, accessible, shared, and broadly applicable
language for knowledge representation.

*** ** ** ***

10 I2. (meta)data use vocabularies that follow FAIR principles. ** ** ** **

11 I3. (meta)data include qualified references to other (meta)data. ** * N/A ***

12 R1. meta(data) have a plurality of accurate and relevant attributes. *** *** ** ***

13 R1.1. (meta)data are released with a clear and accessible data usage
license.

*** *** *** ***

14 R1.2. (meta)data are associated with their provenance. *** ** * **

15 R1.3. (meta)data meet domain-relevant community standards *** ** * **

4.3 Other insights and recommendations from the literature

In the following table we have gathered the recommendations and items that can’t be readily
mapped to an existing FAIR principle. These items focus on the following aspects:

- Interoperability by including dependencies and execution environment
- Usage of version control systems to track changes
- Credit and attribution
- Testing

22

Resource Content

Towards FAIR

principles for

research

software

I4S- Software ​dependencies are documented ​ and mechanisms to access them exist. [Newly proposed]

“The present tendency to package software and its dependencies, either in virtual environments and/or
software containers, alleviates the practical concerns for the final user, and simply moves the issue to the
generation of those packages.”
“...software dependencies need to be clearly documented in a formal, accessible, machine-readable, and
shared way, and formally described following each programming language format.”

“5

recommenda

tions for FAIR

software”

Another suggestion to add: ​Version Control ​(perhaps as a specification for R1.2?)

Software

citation

principles

Credit and Attribution​: Software citations should facilitate giving scholarly credit and normative, legal

attribution to all contributors to the software, recognizing that a single style or mechanism of attribution may

not be applicable to all software.

SSC IG P13

activity

detailed documentation

S- for Sustainability,

P for Preservation,

T- for Trust

From FAIR

research data

toward FAIR

and open

research

software

“If we would achieve that software citations appear somehow very close to publication citations, this could

help with giving appropriate credit and recognition for researchers who develop and maintain research

software.”
Note: authors highlight that in some disciplines, source code itself is data and thus the FAIR principles can
apply; computer science could address some of the challenges as a research topic in their field; the authors
map the FAIR principles only on a very high level but focus on hands on recommendations to make software
FAIR.
“ ​Adequate ​documentation is important, but so are ​engineering practices such as providing ​testing

frameworks and ​test data for ​continuous integration to ensure that future adaptations can be tested to

ensure that they work correctly.”

“Use software virtualization techniques such as Docker to support reusability across platforms”

Attributing and

Referencing

(Research)

Software

Recommendation #2: Putting human at the

heart of the evaluation. We strongly suggest to refrain, for research software, from trying to generate

software citation and credit metadata​, and in particular the list of (main) authors, using automated tools: we

need instead ​quality information​ in the scholarly world,

Software vs.

data in the

context of

citation

N/A

The science

code manifesto

Credit​: “Software contributions must be included in systems of scientific assessment, credit, and recognition.”

Citation​: “Researchers who use or adapt science source code in their research must credit the code's creators
in
resulting publications.”

23

Curation​: “Curators must provide a means of reporting and recording software defects and issues, and for
communicating those defects to authors and readers. “

CoSO

opportunity

note

“ ​A well-adapted citation mechanism needs to be constructed to make sure the visibility and reputation of
researchers take the time they spend producing software into account.”

Recommendation n° 4: Construct a consensual definition of a "contribution" to research software.
Recommendation n° 5: Build tools which integrate this notion of a contribution to be able to effectively credit
authors/designers for their software contributions.

4.4 Summary of Findings

From the literature review, we can conclude that there is a gap between the FAIR principles for
data and software guidelines that can have a FAIR impact on software. Consequently the ability
to assess the FAIRness of software will be different from data in parts.. The gap is mostly about
the interpretation of the principles, which might benefit from different wording when it comes
to software. As seen in the litterature ​reuse and ​interoperability has a different meaning when
it comes to software, which is not captured in the ​FAIR guiding principles ​.

We observe that 10 principles are seen to be relevant by many resources and from that we
conclude that these principles are highly relevant for software. However not all are beneficial
for improving the software as a resource. Most principles are achievable, when it comes to
software. Only one principle has a clear consensus on all the criteria, namely R1.1: releasing
software with a clear and accessible license is seen to be relevant, achievable, measurable and
beneficial for software.

A few recommendations, which are not included in the FAIR guiding principles (​Wilkinson et al.
2016​), are repeated for software, as presented in subsection 2.4. We listed the four major
themes:

● Credit and citation
● Curation and quality information
● Dependencies and documentation that can be part of interoperability
● Reproducibility

In (​Alliez et al. 2019​) three major challenges are identified when it comes to solving the
reproducibility crisis:

1. Availability: In many cases when mentioning software there is no reference to the
specific version of the software and/or a way to access its source code.

a. The availability of the software is not the same as accessibility, even if access is
implied.

b. Only archival and preservation of the software ensure availability for the long
term.

24

2. Dependencies: it is difficult to characterize, collect and reproduce the full stack of the
software’s environment

a. The dependencies and environment challenge can be included as an
interoperability item or a reusability item. This challenge is specific to software
and is not mentioned in the FAIR guiding principles (​Wilkinson et al, 2016​).
However, (​Lamprecht et al., 2019​) state “accessibility, interoperability and
(re)usability are intrinsically connected for research software”, and those include
aspects of installation instructions, software dependencies, and licensing as part
of the extended principles. Clearly, the meaning of ​interoperable or ​reusable in a
software context is different from the meaning described in the ​FAIR guiding

principles.
3. Solving all at once: aggregating and archiving objects of different nature, while solutions

for each class of objects exist, risks the understanding of each object’s special
characteristics

a. Which means that we should carefully address each class of objects separately
also when writing recommendations or principles, but more specifically when
using infrastructures that archives and aggregates research outputs.

In (​Hinsen, 2019​), the reproducibility challenge is described in the form of a ​software collapse
where software is built in layers and the upper layer depends on all the layers below. When one
of the layers ceases to be maintained, it puts the software above it in jeopardy. It is important
to remember that software isn’t created in isolation and it is impossible to ask researchers to
insure reusability for the long term when they have no control on the software stack on which
their software is built.

25

5. Towards FAIRness of software

In this section we provide a brief panorama of mechanisms, components and infrastructures
that can improve the FAIRness of software in the scholarly ecosystem. We will also describe
existing software training for research on how to improve FAIRness of research software.

5.1 Existing mechanisms and components for software

5.1.1 Software identification

The first step toward FAIR research software is identification, yet software objects are very
complex with different levels of granularity and different instances of the same concept, which
makes it very difficult to correctly or completely identify.
Software evolves rapidly and is usually constructed on top of other software layers
(environment, dependencies, etc.) The software project is not a digital object, it can be
decomposed into software modules and software versions, which have a digital manifestation
in software source form or as executables. In (​RDA/FORCE11 Software Source Code
Identification WG, 2020​), an analysis of identification targets and relevant identification
schemes is presented. The main conclusion from the joint SCID WG output is that software
should be identified with both extrinsic identifiers for the metadata and intrinsic identifiers for
the artifact, which can be at different levels of granularity (from a snapshot of a repository, a
release, a directory, a file, to a code fragment).

Figure 3: The granularity level diagram from the SCID WG output (​RDA/FORCE11 Software
Source Code Identification WG, 2020 ​)

26

Intrinsic identifiers are essential when it comes to software identification in industry. They are
the basis of the current practices of software development, especially with version control

systems (e.g git, svn, mercurial, etc.) ​(​Di Cosmo et al., 2020b​).
With this in mind, assigning persistent identifiers to software is much more tricky than it seems.
One can deposit metadata and code into an archiving service (e.g Zenodo, HAL) and get an
identifier for this exact instance of the version with the coupled set of metadata. It is evident
that the software will evolve and change much faster than the metadata, which won’t be visible
on these deposits. Software Heritage provides an archiving service that captures the entire
development history and provides a PID which is an intrinsic identifier that can identify each
and every element of the source code with integrity (called the SWHID). SWHIDS can identify 20

all granularity levels from snapshots (GL5) to fragments of code (GL10). In the intrinsic
identifier’s case only the content is identified and again the metadata should be registered in a
registry, linking the metadata record to the archived content.

5.1.2 Software metadata and vocabularies

The software metadata landscape is rich with many vocabularies and ontologies. A software
ontology is a classification of categories describing a software artifact with explicit
specifications of its entities and relationships in a certain domain of use.

To illustrate, in many software ontologies, a software has a name and has a version number, it
has authors and can depend on other software. The properties are mainly the same in most
ontologies, but the terms used to describe it are different and some terms are dedicated to
specific domains. For example, the relatedPublications property is only used in the academic
domain because of the nature of the property.
Many general schemes have created an entity for software, but might be less detailed with
software specific properties (e.g., dependencies). An overview of a few metadata schemes or
vocabulary that can be used for software is presented in Figure 4, where specific software
schemes and general schemes are differentiated. Each vocabulary is also liked to its ecosystem:

● digital preservation;
● linked data;
● catalogs / registries;
● and the scholarly ecosystem

20 ​https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html

27

https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html

Figure 4​: Software ontologies landscape from Pathways for Discovery of Free Software (slide
deck from LibrePlanet 2018). (​Gruenpeter & Thornton, 2018​) CC-by-4 21

The CodeMeta initiative created a concept vocabulary that can be used to standardize the
exchange of software metadata across repositories and organizations (​Jones et al., 2016​). It was
a result of the FORCE11 Software Citation working group.
In Figure 4 the CodeMeta vocabulary is connected to different metadata categories thanks to
its innovative approach aggregating linked data and research metadata in an intrinsic metadata
file captured inside the content. The CodeMeta initiative provides guidance for research
software developers by using a specific codemeta.json file for documenting descriptive
metadata in an intrinsic metadata file, to facilitate software citation. The vocabulary is built
over the schema.org classes SoftwareApplication and SoftwareSourceCode which links the data
for semantic web discovery. In addition, the CodeMeta crosswalk table can facilitate translation
between ontologies and metadata standards for software, the Rosetta stone of software
metadata.

5.1.3 Software licenses and SPDX

Software licensing is a well established practice in industry and in the Free and Open Source
Software (FOSS) community, because software is protected under copyright law (​Ballhausen,
2019​). FOSS licenses are an instrument to use and share software, under the four essential
FOSS freedoms: run, study, distribute copies and redistribute copies of modified code.

21 ​https://en.wikipedia.org/w/index.php?title=File:Pathways-discovery-free.pdf&page=31

28

https://en.wikipedia.org/w/index.php?title=File:Pathways-discovery-free.pdf&page=31

The Software Package Data Exchange (SPDX) Specification is a standard format to communicate
about software components, licenses and copyrights . SPDX is the standard used by many 22

organizations and is adopted in industry and in the FOSS community when agreeing on naming
licenses.
The Reuse project , which was started by the ​Free Software Foundation Europe (FSFE) is 23 24

complementary to SPDX, it facilitates the application of a license to software, with three steps:
1. Choose license
2. Add license
3. Confirm REUSE compliance

5.1.4 Software Curation

There are curation mechanisms in place that provide a controlled workflow where software is
moderated by digital archivists and curate the metadata of the software. This aims to provide a
better quality metadata and a curated software artifact. In Figure 5 an example of this workflow
from HAL - the french national archive.

Figure 5 ​: The moderation process of software deposits in HAL from (​Di Cosmo et al., 2020a ​)

22 ​https://spdx.dev/about/
23 ​h​ttps://reuse.software/
24 ​https://fsfe.org/

29

https://fsfe.org/
https://spdx.dev/about/
https://reuse.software/
https://reuse.software/
https://fsfe.org/

In (​Di Cosmo et al., 2020a​) and in (​Alliez et al. 2019​), keeping humans in the research
dissemination workflow is seen to be essential to have a quality record of the software
resource.

4.1.5 Software artifact evaluation and badging

There are different initiatives that tried to improve the quality of the published artifact with
artifact evaluation and badging, see the Artifact Evaluation Committee (AEC) . One example is 25

the ACM artifact evaluation, giving an incentive to follow FAIR principles with research
software. It defined a set of qualifiers for research artifacts, in order to verify fundamental
requirements to achieve reproducible research. The NISO Taxonomy, Definitions, and
Recognition Badging Scheme Working Group has considered a number of these schemes and
proposed a Recommended Practice on Reproducibility Badging and Definitions which includes 26

aspects relevant to the FAIRness of software, including the availability of software outputs and
related metadata.
Artifact evaluation is one step towards improving software quality and solving the
reproducibility challenge.

Figure 6 ​: The ACM badges for artifact evaluation 27

5.2 The ​landscape of existing infrastructures

There are different infrastructures already in place that provide services and guidance for
researchers, which are actively developing and creating software for their research. Many

25 ​https://www.artifact-eval.org/
26 Draft Recommended Practice at:
https://groups.niso.org/apps/group_public/download.php/23561/RP-31-202X_Reproducibility_Badging_draft_for
_public_comment.pdf
27 ​https://www.acm.org/publications/policies/artifact-review-and-badging-current

30

https://www.artifact-eval.org/
https://groups.niso.org/apps/group_public/download.php/23561/RP-31-202X_Reproducibility_Badging_draft_for_public_comment.pdf
https://groups.niso.org/apps/group_public/download.php/23561/RP-31-202X_Reproducibility_Badging_draft_for_public_comment.pdf
https://www.acm.org/publications/policies/artifact-review-and-badging-current

researchers are not aware of the possibilities they have to improve the findability and
reusability of their software, which at the same time can offer them credit for their work.

In this section we briefly present key infrastructures for research software in three major types
of infrastructures:

● Archives and institutional repositories
● Journals and publishers
● Registries / indexers / aggregators

We are at a turning point where one one side the community understands how much software
is important and on the other we have infrastructures that can support software. It is time that
policy makers, institutions, universities, international initiatives and other key actors that are
involved in making recommendations for software will be aware of the existing infrastructures
and their contribution to the scholarly ecosystem.

5.2.1 Software archives and institutional repositories

Software archives and Institutional Repositories (IR) are fundamental infrastructures providing
access to software on the long-term ​. It is important to note the differences between the
existing archives and IR. Many are transversal repositories accepting different types of digital
objects, but in turn they provide PIDs. In very few cases, we can find specific software
metadata.

Alongside the traditional IR, a new archive has emerged this past few years, the universal
source code archive - Software Heritage (SWH). It aims to collect, preserve and share all
software source code publicly available (​Di Cosmo & ​Zacchiroli, 2017​)​. With SWH, it is possible
to use the `save code now` functionality to preserve a complete snapshot of a git (or other
version control system) repository the same way web pages can be saved with the wayback
machine . 28

Clearly, preserving the software resources for research is a core element to answer many
aspects of the FAIR principles for software. Software archiving does not necessarily mean the
software must be published, but it should be publicly available in a permanent location.

In annex ​C.1​, we present two case studies for archives: Zenodo and Software heritage.

5.2.2 Software journals and publishers

One of the important challenges for researchers that create software is getting credit for their
work. A few journals have provided different solutions for these researchers. JOSS , eLife , 29 30

28 ​archive.org
29 ​https://joss.theoj.org/
30 ​https://elifesciences.org/

31

https://archive.org/
https://joss.theoj.org/
https://elifesciences.org/

IPOL , JORS , SoftwareX and others allow or require that the software source code will be 31 32 33

peer reviewed and published with the article.

By introducing peer review of software source code, there is a level of certification and
recognition of the reviewed artifacts.

In annex ​C.2​, we present SoftwareX as a case study for software journals.

5.2.3 Software registries / indexers / aggregators

Findability of software is only possible if it exists in a public location and is fully described with a
complete and semantically acceptable metadata vocabulary. Registries, indexers and
aggregators provide search mechanisms to find software projects.

A few precious examples exists that are discipline specific, like ASCL for astrophysics software 34

(​Allen and Scmidt, 2015​) and swMath for mathematical software (​Bönisch et al. 2013, ​Chrapary 35

et al. 2017​).
Note that there are also package managers that can play the role of a registry without the academic
focus, for example CRAN for software packages in R or PyPI for software packages in Python. 36 37

In annex C.3, we present swMath as a case study for software registries.

5.2.4 Research software training

Research software training is the glue between the building blocks of the FAIR ecosystem.
Without training we can continue recommending and reporting without it taking any affect and
the research lifecycle or on the researcher recurrent activities.

We should acknowledge the organizations, institutions and universities that invest in research
software training and provide the researcher with the basic knowledge of the FAIR principles
and the existing infrastructures and services that can help improve their research.

The Carpentries is an example for a software training organization aiming to provide 38

information and tools for researchers to do more efficient, open and reproducible research.

In annex ​C.4​, we present The Carpentries as a case study for research software training.

31 ​https://www.ipol.im/
32 ​https://openresearchsoftware.metajnl.com/
33 ​https://www.sciencedirect.com/journal/softwarex
34 ​https://ascl.net/
35 ​https://swmath.org/
36 ​https://cran.r-project.org/
37 ​https://pypi.org/
38 ​https://carpentries.org/

32

https://www.ipol.im/
https://openresearchsoftware.metajnl.com/
https://www.sciencedirect.com/journal/softwarex
https://ascl.net/
https://swmath.org/
https://cran.r-project.org/
https://pypi.org/
https://carpentries.org/

6. Recommendations

To conclude this report we present a set of recommendations for the creation of FAIR guiding
principles for research software. These recommendations are based on the exploration of the
role of software in the FAIR ecosystem, the analysis of the literature on applying the FAIR
principles to software, and the review of existing solutions and infrastructures presented in the
sections above.

The following recommendations are high-level requirements in the next practical steps toward
a community effort defining the FAIR principles for research software. We specifically have in
mind the joint RDA, FORCE11 & ReSA FAIR4RS WG, which is working on defining the FAIR
principles for research software and intends to involve different communities for the adoption
of the new principles. The recommendations in this report may serve as a useful starting point
to scope and organize the FAIR4RS WG work. Each recommendations has a requirement level,
as defined in RFC2119 : 39

● MUST is an absolute requirement
● SHOULD is a needed requirement for which exceptions are possible
● MAY is an optional requirement

At a more general level, it is to be acknowledged that any new principle may lead to extra
requirements enforced on researchers, who are already facing significant challenges when
developing or maintaining software, which is a complex and living object. The time and effort
required to abide by these principles must hence be properly taken into account; to find a
proper balance between effort and return we suggest that a large community be consulted. In
order to maximize adoption, clear and immediate benefits should be offered to the researcher,
e.g. by reducing the amount of times she is requested to enter the same information in
different systems in different phases of her career.

39 ​https://tools.ietf.org/html/rfc2119

33

https://tools.ietf.org/html/rfc2119

Recommendation n°1 FAIR principles for research software outcomes ​MUST be produced
by taking into account the specific nature of software and not as
just a simple adaptation of the FAIR guiding principles for data.

Recommendation n°2 Applying principles and recommendations to software demands
effort, time and skill. The realistic nature of these principles ​MUST
be considered.

Recommendation n°3 A large community forum ​MUST be consulted when writing the
principles. This community forum ​MUST include stakeholders from
different disciplines and with different roles, looking at software in
all its aspects: as a tool, as a research outcome and as the object of
research.

Recommendation n°4 Existing infrastructures that already provide solutions for software
artifacts ​SHOULD be asked to review the FAIR principles for
research software.

Recommendation n°5 Each principle ​MUST​ be relevant for software source code.

Recommendation n°6 Each principle ​MUST​ be achievable for software source code.

Recommendation n°7 Each principle ​SHOULD be measurable for software source code;
detailed explanations of how a measurable principle is measured
MUST be available.

Recommendation n°8 Each principle ​SHOULD contribute to software recognition in
scholarly communication.

Recommendation n°9 Each principle ​SHOULD contribute to the curation quality of the
software resource.

Recommendation n°10 Each principle ​MAY solve one or more research software challenges
(e.g credit, reproducibility, sustainability & management,
documentation, quality control, quality metadata, licensing and
more).

34

7. Conclusion

This report is part of the FAIRsFAIR project’s outputs and it is the first milestone focused
specifically on software as a digital object. Software has an important place in academia and as
such it has an important place in a FAIR ecosystem (​European Commision, 2018​). However, and
notwithstanding its importance, there is no widely accepted definition of the FAIR guiding
principles to research software (as opposed to research data). This report aims to help close
this gap by bringing together a review of the role of software in the FAIR ecosystem, a survey of
current issues and pain points, an in-depth analysis of existing resources for FAIRification of
software, a discussion of existing solutions and infrastructure, and - finally - a set of
recommendations for the creation of community-supported FAIR guiding principles for research
software.

We have discussed the distinct roles of software which is produced and consumed throughout
the research lifecycle, which can be concisely resumed with the following functionalities:

- as a tool;
- as a research outcome or result; and
- as the object of research.

We have also discussed the complexity of software and its roles in a FAIR ecosystem, in order
to emphasize the requirement to evaluate FAIRness of software differently, depending on the
purpose it fulfills. Trying to answer all three at once can impose unnecessary requirements and
might ignore fundamental aspects. In addition, we illustrated the complexity of software using
the granularity level definition that was introduced in the recent joint RDA & FORCE11 software
identification working group output (​RDA/FORCE11 Software Source Code Identification WG,
2020​). Given this complexity, focusing on source code is necessary when it comes to the
FAIRification of research outcomes.

We have also analyzed nine current resources that call for the recognition of software in
academia and present guidelines or recommendations to improve software status, by becoming
FAIR or by improving curation of software in general. Throughout this analysis we have looked
for demonstrations of each FAIR principle to see if the principle is relevant, achievable,
measurable and benefits software. From the analysis we captured the gap between the FAIR
guiding principles for data and the aspiring guidelines needed for software as a research
outcome.

Furthermore, we have listed and interpreted the recurrent challenges that researchers and
research infrastructures face today when handling software, which include technical as well as
social aspects; and we have presented a number of services and infrastructures that support

35

software in academia, and that could form the building blocks of a FAIR ecosystem that includes
software, both as research outcomes as well as objects of research.

In the last section above, we propose 10 recommendations to follow when creating guidelines,
or more specifically, when considering the application of the FAIR principles to research
software.

As a final consideration, the authors would like to underline how, in academia as in the FAIR
ecosystem, it is crucial to consider software as a first class citizen and provide guidelines,
recommendations, metrics, solutions and infrastructures that acknowledge the importance of
software while adequately respecting the differences between software and other digital
objects.

8. Acknowledgements

We would like to thank the following people for providing valuable input through comments
and discussions on version 1.0 of this report as a first experts review of the report :
Paula Andrea Martinez, Dan S. Katz, Neil Chue Hong, Michelle Barker and other members of the
FAIR4RS WG steering committee.

36

Annex A: FAIRsFAIR Task 2.4 Statement of Work

FAIRsFAIR Task 2.4 (T2.4), as stipulated in the FAIRsFAIR project proposal, is tasked with
“​extending the FAIR concept currently applied to data to the range of data services needed to

enable and support FAIR data, and to software” ​. This ambition naturally splits into two related
but distinct topics, namely (i) ‘FAIRness of services’ and (ii) ‘FAIR principles for (research)
software’. T2.4 will be working on these topics alongside each other, seeking synergies where
possible but also mindful of intrinsic differences that warrant a parallel approach.

In terms of the first of these two topics, ‘FAIRness of services’, T2.4 will be considering how
services can make data (more) FAIR. This formulation respects and builds upon the original FAIR
principles, which were articulated specifically for research data objects (and not for services or
software). Taking these principles as a starting point, ​T2.4 will be delivering an assessment

framework that can be used to gauge how a given service acting on a data object makes that

data object ‘more FAIR’, ‘less FAIR’ or ‘equally FAIR’​. In formulating such a framework, it is
anticipated that some of the FAIR principles may apply to services as they do to data objects
(e.g., “being registered and indexed in a searchable resource” under Findability). Equally there
will be FAIR principles for data objects that do not translate to services, and there will be
criteria for services that do not directly map onto one of the original FAIR principles (e.g.,
quality measures or warranties specific to services such as availability or trustworthiness). In
other words, the directive of this task goes beyond a naïve mapping of the FAIR principles for
data objects to services; rather, it aims to support an optimal interplay between services and
research (data) objects to realize a ‘FAIR ecosystem’ (as articulated in (4)).

Two remarks are in order. First, the proposed assessment framework will be normative in the
sense that it scores against a desired future state, i.e. it is constructed relative to a set of
desired features and qualities for services to have. The task will thus also provide concrete,
actionable recommendations for services to increase their level of ‘FAIRness’. Such desiderata
will be defined from community input about the current state (including good practices and
current pain points), desired state, and recommendations to close the gap between current and
desired state. The second remark is about scope: The task considers all services that create,
read, update or delete data at any point in the data life cycle . For the sake of focus, it will 40

40 ​As working definition for the concept of a ‘service’ in the context of research data, we will
adopt the formulation put forward by the ICSU-WDS/RDA Publishing Data Workflows WG (15):
"A means of delivering value to the producers and users of digital objects by facilitating
outcomes they want to achieve without the ownership of specific costs or risks”

37

primarily concentrate on digital services with a strong IT component, i.e. strongly relying on
technology to deliver value users.

The second objective of the task pertains to research software, i.e. software artefacts that are
the output of a research activity. ​T2.4 will deliver recommendations on how to apply or adapt

the FAIR principles, formulated for data objects, to software artefacts. Here it is expected that
a naïve mapping of the original FAIR principles may already provide a useful starting point (in
that such a straightforward application “may act as a guideline for those wishing to enhance the
reusability of their research software holdings”, wording adapted from (2)); yet adaptations
and/or extensions will likely be required to account for the special nature of research software
(such as its dynamic nature with large numbers of versions and library dependencies). Also for
this objective, community input about the current state, desired state and recommendations to
close the gap will be central in formulating the recommendations.

While the subject matter and intended approach for both objectives within T2.4 have their
differences, they are joined at the hip by the overarching ambition to create a ‘FAIR ecosystem’
which comprises of FAIR Digital Objects - including data and software - together with relevant
services and infrastructure(4). This suggests that there will be ample connections and
inter-related questions between the objectives, which justifies addressing them in parallel
within the task.

The explicit connection between T2.4 and the notion of a ‘FAIR ecosystem’ also signals that the
work carried out by the task will not stand in isolation. T2.4 will seek coordination and
collaboration with a number of relevant projects and organization, including (but not limited to)
the EOSC FAIR WG, GO FAIR, FAIRsharing, the joint FORCE11 & RDA Software Identification WG,
the RDA Software Source Code IG, and FAIRsFAIR WP4 around FAIR certification.

Finally, the approach taken within T2.4 will be guided by the ambition to deliver concrete,
reasonable and actionable outputs that are rooted in real-life problems and ready to be
adopted by the various stakeholders – and hence will err on the side of ‘progress’ over
‘perfection’.

Milestones & Deliverables

M12 Feb 2020 Milestone M2.7 Assessment report on FAIRness of services

M19 Sep 2020 Milestone M2.15 Assessment report on FAIRness of research software
(present report)

38

M20 Oct 2020 Milestone M2.10 Report on basic framework on FAIRness of services

M30 Aug 2021 Deliverable D2.7 Framework for assessing FAIR services

39

Annex B: Complete analysis of software guidelines
B.1 Findable
F1. (meta)data are assigned a globally unique and eternally persistent identifier.

Resource Content

Towards FAIR principles

for research software
Rephrased​: “​Software and its associated metadata have a global, unique and persistent

identifier for each ​released version ​.” “ ​Software versions should get assigned different PIDs as

they represent specific developmental stages of the software. This is important as it will

contribute to guaranteeing data provenance and reproducible research processes.”

“5 recommendations for

FAIR software”
Citation​: ​"Regarding archiving copies of your software, look for services that store their own

copy of a snapshot of your software, such that whatever persistent identifier you get (DOI,

URN, ARK, etc) points to a specific version of the software, and will continue to resolve to

exactly that version for the foreseeable future."

Software citation

principles
Unique Identification​: A software citation should include a method for identification that is

machine actionable, globally unique, interoperable, and recognized by at least a community of

the corresponding domain experts, and preferably by general public researchers.

SSC IG P13 activity F1- ​an ​identifier​ for each piece of software, need to define which ​unit​ gets an identifier

From FAIR research data

toward FAIR and open

research software

(not explicitly discussed)

Attributing and Referencing

(Research) Software

when looking for reproducibility, it is necessary to ​precisely identify not only the main software

but also its ​whole environment and to make it available in an open and perennial way ​. In this

context, we need verifiable build methods and intrinsic identifiers that do not depend on

resolvers that can be abused or compromised

Software vs. data in the

context of citation

“best practices to facilitate reproducibility of computational science involve archiving of the
following, in durable, plaintext formats:
1. the ​software itself, in source code form ​ in a trusted digital repository
…”

The science code manifesto N/A

CoSO opportunity note
Recommendation n° 3: Promote archiving and ​referencing best practices for research
software.

FAIR Relevant Achievable Measurable Benefits

F1. (meta)data are assigned a globally unique and
eternally persistent identifier.

*** *** ** ***

Each criteria is evaluated with the following scale:

N/A doesn’t appear
(white)

* observed in a small subset
(one paper)

medium subset (2-3) * large subset (3+
papers)

! disagreeing

40

F2. data are described with rich metadata.

Resource Content

Towards FAIR principles

for research software
“Rephrased​: ​Software is described with rich metadata.”

” ​In order for others to find and use that software, they need information about what it does,

what it depends on and how it works.”

“Additionally, some programming languages provide a way to add metadata to software

sources, i.e., packages”

“5 recommendations for

FAIR software”
Registry:: ​"What metadata does the community registry offer? This is sometimes described in

the documentation of the registry, but you can also see for yourself by installing a tool like the

OpenLink Structured Data Sniffer. "

Citation: ​: ​"Regarding archiving copies of your software, look for services that store their own

copy of a snapshot of your software, such that whatever persistent identifier you get (DOI,

URN, ARK, etc) points to a specific version of the software, and will continue to resolve to

exactly that version for the foreseeable future."

Software citation

principles
“Necessary metadata should then be included in a CITATION file (​Wilson, 2013​) or

machine-readable CITATION.jsonld file (​Katz & Smith, 2015​). “

SSC IG P13 activity

F2- ​need to better understand how sw is applied- what does it do, control vocabulary,

metadata must have declared semantics and formal syntax taxonomy for licenses (spdx)

From FAIR research data

toward FAIR and open..
Provide software metadata to improve software retrieval

Attributing and Referencing

(Research) Software

“Recommendation #1: … a rich taxonomy for software contributions, that must not be

flattened out on the simple role of software developer”

“The difficulty lies in getting quality metadata, and in particular in determining who should get

credit, for what kind of contribution, and who has authority to make these decisions.”

Software vs. data in the

context of citation

“best practices to facilitate reproducibility of computational science involve archiving of the
following, in durable, plaintext formats: ...
2. structured or unstructured narrative documentation (e.g., the ODD protocol (Grimm et al.,
2013)) specifically covering key components of the software...”

The science code manifesto

Curation: “​The curator must provide the specific version of software used in a publication,
along with ownership and licensing information, accessible by a unique stable identifier such as
a DOI or URI.”

CoSO opportunity note (not explicitly discussed)

FAIR Relevant Achievable Measurable Benefits

F2. data are described with rich metadata. *** *** N/A ***

Each criteria is evaluated with the following scale:

N/A doesn’t appear
(white)

* observed in a small subset
(one paper)

medium subset (2-3) * large subset (3+
papers)

! disagreeing

41

http://www.software.ac.uk/blog/2013-09-02-encouraging-citation-software-introducing-citation-files
https://doi.org/10.5334%2Fjors.by

F3. metadata specify the data identifier.

Resource Content

Towards FAIR principles

for research software
Rephrased and extended: “Metadata clearly and explicitly include identifiers for ​all the

versions of the software it describes.”

“For reproducibility and reusability purposes, any person and/or system examining the

metadata needs to be able to identify which version of the software is described by it”

“5 recommendations for

FAIR software”
(not explicitly discussed)

Software citation

principles
“Specificity​: ​Software citations should facilitate identification of, and access to, the specific

version of software that was used. Software identification should be as specific as necessary,

such as ​using version numbers ​,​ revision numbers ​, or variants such as platforms.”

SSC IG P13 activity “level of software (package? component? a piece of a large library?”

From FAIR research data

toward FAIR and open

research software

(not explicitly discussed)

Attributing and Referencing

(Research) Software

“Recommendation #3​: Distinguish citation from ​reference It is essential to distinguish citations

to projects or results from exact references to software and their environment, and we believe

that both should be used in articles.”

Software vs. data in the

context of citation
(not explicitly discussed)

The science code manifesto
“The source code made available should be the ​exact version used in processing data for the
published paper.”

CoSO opportunity note
“Recommendation n° 3: Promote archiving and ​referencing best practices for research
software.”

FAIR Relevant Achievable Measurable Benefits

F3. metadata specify the data identifier. *** ** * **

Each criteria is evaluated with the following scale:

N/A doesn’t appear
(white)

* observed in a small subset
(one paper)

medium subset (2-3) * large subset (3+
papers)

! disagreeing

42

F4. (meta)data are registered or indexed in a searchable resource.

Resource Content

Towards FAIR principles

for research software
Rephrased: Software and its associated metadata are included in a searchable software

registry.

“5 recommendations for

FAIR software”
Registry:

Register your code in a community registry”

"For others to make use of your work, they need to be able to find it first. Community registries

are like the yellow pages for software -- registering your software makes it easier for others to

find it, particularly through the use of search engines such as Google”

“What metadata does the community registry offer? This is sometimes described in the

documentation of the registry, but you can also see for yourself by installing a tool like the

OpenLink Structured Data Sniffer. "

Software citation

principles
(not explicitly discussed)

SSC IG P13 activity

“source code and metadata are registered/indexed in a searchable resource,

software repositories need to think about long-term management,

source code is much more searchable because it's always text, metadata is largely

embedded in the code as comments (code is mostly text that can be searched easily)”

From FAIR research data

toward FAIR and open

research software

“Employ research software observatories which may serve as retrieval service”

Attributing and Referencing

(Research) Software
(not explicitly discussed)

Software vs. data in the

context of citation
(not explicitly discussed)

The science code manifesto (not explicitly discussed)

CoSO opportunity note
Recommendation n° 7: “Encourage academic institutions to share research software
metadata”

FAIR Relevant Achievable Measurable Benefits

F4. (meta)data are registered or indexed in a
searchable resource.

*** ** * **

Each criteria is evaluated with the following scale:

N/A doesn’t appear
(white)

* observed in a small subset
(one paper)

medium subset (2-3) * large subset (3+
papers)

! disagreeing

43

B.2 Accessible
A1 (meta)data are retrievable by their identifier using a standardized communications

protocol.

Resource Content

Towards FAIR principles

for research software
Rephrased: “Software and its associated metadata are accessible by their identifier using a

standardized communications protocol.”

“Retrievability of research software and its metadata ​can be achieved by ​depositing it in an

appropriate repository and/or registry.”

“It is worth to re-emphasize that research software are not single, isolated, digital objects”

“5 recommendationsfor

FAIR software”
(not explicitly discussed)

Software citation

principles
“Accessibility: Software citations should facilitate access to the software itself and to its

associated metadata, documentation, data, and other materials necessary for both humans

and machines to make informed use of the referenced software.”

SSC IG P13 activity “replace `meta(data)` with source code and metadata, active curated entries for software”

From FAIR research data ... “Use repositories such as Zenodo to access archived software versions”

Attributing and Referencing

(Research) Software

“Recommendation #3: Distinguish citation from reference It is essential to distinguish citations

to projects or results from exact references to software and their environment, and we believe

that both should be used in articles. We also strongly encourage the use of tools like GUIX and

Software Heritage to build such perennial references.”

Software vs. data in the

context of citation
(not explicitly discussed)

The science code manifesto

“Code​: All source code written specifically to process data for a published paper must be

available to the reviewers and readers of the paper.”

CoSO opportunity note

“Guaranteeing permanent access to both the software and the data it manipulates means it

must be possible:

● to refer to particular versions of the software used as well as their execution
environments on a long-term basis;

● to possess platforms capable of permanently storing these versions;
● to possess hardware and system environments which allow software to be re-used

identically. This is a complex scientific problem because the rapid obsolescence of
hardware can have a strong impact on the reproducibility of certain types of results.”

FAIR Relevant Achievable Measurable Benefits

A1 (meta)data are retrievable by their identifier using a
standardized communications protocol.

*** *** N/A ***

Each criteria is evaluated with the following scale:

N/A doesn’t appear
(white)

* observed in a small subset
(one paper)

medium subset (2-3) * large subset (3+
papers)

! disagreeing

44

A1.1 the protocol is open, free, and universally implementable.

Resource Content

Towards FAIR principles

for research software
“Usually software (and its metadata) can be downloaded directly from the repository and/or
website via standard protocols (HTTP/SSH).
There is no need to rephrase this specific item as it generally applies to any digital resource
exposed via the web, and thus to both data and software.”

“5 recommendations for

FAIR software”
Repository: “Developing scientific software in publicly accessible repositories enables early
involvement of users, helps build collaborations, contributes to the reproducibility of results
generated by the software, facilitates software reusability, and contributes to improving
software quality. “

Software citation

principles
(not explicitly discussed)

SSC IG P13 activity (not explicitly discussed)

From FAIR research data

toward FAIR and open

research software

“Use software development platforms such as GitHub for code cloning”

Attributing and Referencing

(Research) Software

“With the rise of Free/Open Source Software, which requires and fosters source code

accessibility, access has been provided to an enormous amount of software source code that

can be massively reused.”

“With the emerging awareness of the importance of making research openly accessible and

reproducible, Inria has stepped up its engagement for software”

Software vs. data in the

context of citation
(not explicitly discussed)

The science code manifesto
Curation: “Source code must remain available, linked to related materials, for the useful
lifetime of the publication.”

CoSO opportunity note (not explicitly discussed)

FAIR Relevant Achievable Measurable Benefits

A1.1 the protocol is open, free, and universally
implementable.

** ** N/A **

Each criteria is evaluated with the following scale:

N/A doesn’t appear
(white)

* observed in a small subset
(one paper)

medium subset (2-3) * large subset (3+
papers)

! disagreeing

45

A1.2 the protocol allows for an authentication and authorization procedure, where

necessary.

Resource Content

Towards FAIR principles

for research software
“The protocol allows for an authentication and authorization procedure, where

necessary..[Remain the same]”

“ ​Similarly, it might be possible that users might need to register, and/or authenticate, before

downloading binaries or, in the case of web applications, using the software. In all cases,

access conditions should be justified and documented.”

“5 recommendations for

FAIR software”
(not explicitly discussed)

Software citation

principles
(not explicitly discussed)

SSC IG P13 activity (not explicitly discussed)

From FAIR research data

toward FAIR and open

research software

(not explicitly discussed)

Attributing and Referencing

(Research) Software
(not explicitly discussed)

Software vs. data in the

context of citation
(not explicitly discussed)

The science code manifesto (not explicitly discussed)

CoSO opportunity note (not explicitly discussed)

FAIR Relevant Achievable Measurable Benefits

A1.2 the protocol allows for an authentication and
authorization procedure, where necessary.

N/A N/A N/A N/A

Each criteria is evaluated with the following scale:

N/A doesn’t appear
(white)

* observed in a small subset
(one paper)

medium subset (2-3) * large subset (3+
papers)

! disagreeing

46

A2. metadata are accessible, even when the data are no longer available.

Resource Content

Towards FAIR principles

for research software
Rephrased: “Software metadata are accessible, even when the software is no longer

available.”

“ ​Metadata provides the context for understanding research software, and this should persist

even when the software itself is no longer available.“

“5 recommendations for

FAIR software”
(not explicitly discussed)

Software citation

principles
“we recognize that the software version may no longer be available, but it still should be cited

along with information about how it was accessed.”

SSC IG P13 activity (not explicitly discussed)

From FAIR research data

toward FAIR and open

research software

“Use research software observatories as dedicated repository services” ​(not explicitly)

Attributing and Referencing

(Research) Software
(not explicitly discussed)

Software vs. data in the

context of citation
(not explicitly discussed)

The science code manifesto (not explicitly discussed)

CoSO opportunity note (not explicitly discussed)

FAIR Relevant Achievable Measurable Benefits

A2 metadata are accessible, even when the data are no
longer available.

** N/A N/A *

Each criteria is evaluated with the following scale:

N/A doesn’t appear
(white)

* observed in a small subset
(one paper)

medium subset (2-3) * large subset (3+
papers)

! disagreeing

47

B.3 Interoperable
I1. (meta)data use a formal, accessible, shared, and broadly applicable language for

knowledge representation.

Resource Content

Towards FAIR principles for

research software
Rephrased and extended: “Software and its associated metadata use a formal, accessible,
shared and broadly applicable language to facilitate machine readability and data exchange.”
“ ​Interoperability for research software can be understood in two dimensions: as part of
workflows (horizontal dimension) and as stack of digital objects that need to work together at
compilation and execution times (vertical dimension).”
“When considering research software as part of a workflow, software should be able to share
input and/or output data sets with other software.”

“5 recommendations for

FAIR software”
Registry: ​: "What metadata does the community registry offer? This is sometimes described in
the documentation of the registry, but you can also see for yourself by installing a tool like the
OpenLink Structured Data Sniffer. "
Software quality: ​: “Checklists help you write good quality software. What exactly constitutes
'good quality' depends on the specific application of the software, but typically covers things
like documenting the source code, using continuous testing, and following standardized code
patterns.”

Software citation

principles
(not explicitly discussed)

SSC IG P13 activity

prefer open source software when doing published research

formal syntax taxonomy for licenses ​ (spdx)

From FAIR research data... Provide ​proper interface definitions ​ in modular software architectures

Attributing and Referencing

(Research) Software

● “the need of a ​rich metadata schema​ to describe software projects;
● the need of a rich ​taxonomy for software contributions​, that must not be flattened

out on the simple role of software developer;
● Last but not least, while tools may help, a ​careful human process involving the

research teams is crucial to produce the qualied information and metadata that is
needed for proper credit and attribution in the scholarly world.”

Software vs. data in the

context of citation
(not explicitly discussed)

The science code manifesto (not explicitly discussed)

CoSO opportunity note
Recommendation n° 6: Promote a ​shareable standardized metadata schema for the software
with a view to opening up software metadata derived from research.

FAIR Relevant Achievable Measurable Benefits

I1. (meta)data use a formal, accessible, shared, and broadly
applicable language for knowledge representation.

*** ** ** ***

Each criteria is evaluated with the following scale:

N/A doesn’t appear
(white)

* observed in a small subset
(one paper)

medium subset (2-3) * large subset (3+
papers)

! disagreeing

48

I2. (meta)data use vocabularies that follow FAIR principles.

Resource Content

Towards FAIR principles

for research software
Reinterpreted, extended and split: “I2S.1 - Software and its associated metadata are formally

described using controlled vocabularies that follow the FAIR principles. I2S.2- Software

use and produce data in types and formats that are formally described

using controlled vocabularies that follow the FAIR principles.”

“5 recommendations for

FAIR software”
Citation: “The ​CodeMeta standard and the ​Citation File Format were specifically designed 41 42

to enable citation of software and will likely meet your needs. For either one, you write a plain
text file with citation metadata, which you then distribute with your software.”

Software citation

principles
Existing efforts around metadata standards. Producing detailed specifications and

recommendations for possible metadata standards to support software citation was not within

the scope of this working group. However some discussion on the topic did occur and there was

significant interest in the wider community to produce standards for describing research

software metadata.

SSC IG P13 activity “ ​commonly used ​ file formats”

From FAIR research data

toward FAIR and open

research software

“Conform to established ​software standards ​”

Attributing and Referencing

(Research) Software

“As an illustration of this recommendation, the rich metadata collected by HAL in the deposit

process are sent to SWH using the now ​ standard CodeMeta schema.​”

CodeMeta is an example of a vocabulary that follows FAIR principles

Software vs. data in the

context of citation
 ​(not explicitly discussed)

The science code manifesto ​(not explicitly discussed)

CoSO opportunity note

“Recommendation n° 6: Promote a ​shareable standardized metadata schema for the software

with a view to opening up software metadata derived from research.”

FAIR Relevant Achievable Measurable Benefits

I2. (meta)data use vocabularies that follow FAIR
principles.

** ** ** ***

Each criteria is evaluated with the following scale:

N/A doesn’t appear
(white)

* observed in a small subset
(one paper)

medium subset (2-3) * large subset (3+
papers)

! disagreeing

41 https://codemeta.github.io/
42 https://citation-file-format.github.io/

49

https://codemeta.github.io/
https://citation-file-format.github.io/

I3. (meta)data include qualified references to other (meta)data.

Resource Content

Towards FAIR principles

for research software
“Discarded”

“I3 aims to interconnect data sets by semantically meaningful relationships..... However, such

relationships are difficult to translate to the case of research software. We found the closest

resemblance of this principle to be in software dependencies.” => I4S

“5 recommendations for

FAIR software”
 ​(not explicitly discussed)

Software citation

principles
(not explicitly discussed)

SSC IG P13 activity (not explicitly discussed)

From FAIR research data

toward FAIR and open

research software

Use software virtualization techniques for portability

Participate in artifact evaluation processes to evaluate interoperability

Attributing and Referencing

(Research) Software

“First, the frequent lack of availability of the software source code, and/or of precise

references to the right version of it, is a major issue [7]. Solving this issue (Reproducibility)

requires stable and perennial source code archives and specialized identifiers [9].”

Software vs. data in the

context of citation

(not explicitly discussed)“First, the frequent lack of availability of the software source code,

and/or of precise references to the right version of it, is a major issue [7]. Solving this issue

(Reproducibility) requires stable and perennial source code archives and specialized identifiers

[9].”

The science code manifesto
“The software should be linked to a list of publications using the code, to other versions of the
code, to relevant versions of tools and libraries used, and to derived code.”

CoSO opportunity note
“it is therefore necessary to define reference methodologies for technology transfer based on
existing mechanisms (....), and to share them with the actors concerned (...).”

FAIR Relevant Achievable Measurable Benefits

I3. (meta)data include qualified references to other
(meta)data.

** * N/A ***

Each criteria is evaluated with the following scale:

N/A doesn’t appear
(white)

* observed in a small subset
(one paper)

medium subset (2-3) * large subset (3+
papers)

! disagreeing

50

B.4 Reusable

R1. meta(data) have a plurality of accurate and relevant attributes.

Resource Content

Towards FAIR principles

for research software
Rephrased: “Software and its associated metadata are richly described with a plurality of

accurate and relevant attributes.” ​(Note that this principles isn’t developed)

“5 recommendations for

FAIR software”
Registry: ​“With metadata, search engines are able to get some idea of what the software is

about, what problem it addresses, and what domain it is suited for. In turn, this helps improve

the ranking of the software in the search results -- better metadata means better ranking.”

Software citation

principles
In Table 2. A collection of use cases and basic metadata requirements for software citation
(differentiating required metadata and beneficial metadata)

SSC IG P13 activity needs metadata that isn't available (authorship, dependencies)

From FAIR research data

toward FAIR and open

research software

“For reusability, metadata, data and software should be well-described such that they can be

reused, combined and extended in different settings.”

Attributing and Referencing

(Research) Software
“the need of a rich metadata schema to describe software projects;”

Software vs. data in the

context of citation

“best practices to facilitate reproducibility of computational science involve archiving of the

following, in durable, plaintext formats:

...

2. structured or unstructured narrative documentation (e.g., the ODD protocol (Grimm et al.,

2013)) specifically covering key components of the software”

The science code manifesto (not explicitly discussed)

CoSO opportunity note (not explicitly discussed)

FAIR Relevant Achievable Measurable Benefits

R1. meta(data) have a plurality of accurate and
relevant attributes.

*** *** ** ***

Each criteria is evaluated with the following scale:

N/A doesn’t appear
(white)

* observed in a small subset
(one paper)

medium subset (2-3) * large subset (3+
papers)

! disagreeing

51

R1.1. (meta)data are released with a clear and accessible data usage license.

Resource Content

Towards FAIR principles

for research software
Software and its associated metadata have independent, clear and accessible usage licenses

compatible with the software dependencies​. [Rephrased and extended]

“5 recommendations” License: “Any creative work (including software) is automatically protected by copyright. Even

when the software is available via code sharing platforms such as GitHub, no one can use it

unless they are explicitly granted permission. This is done by adding a software license, which

defines the set of rules and conditions for people who want to use the software.”

Software citation

principles
Software license is only mentioned in the use cases table and with an + sign which states:

indicate that the use case would benefit from that metadata if available.

SSC IG P13 activity Ideally licenses should be in rights expression languages

From FAIR research data

toward FAIR and open

research software

Build modular software architectures to allow for reusing parts of research software

Attributing and Referencing

(Research) Software
 ​(not explicitly discussed)

Software vs. data in the

context of citation

“Software is a creative work, scientific data are facts or observations In particular, software is

generally subject to copyright protection as a creative work that can continue to evolve over

time, while scientific data is frequently considered outside the domain of copyright as it is

comprised of contextual facts about the world…”

The science code manifesto
Copyright: The copyright ownership and license of any released source code must be clearly
stated.

CoSO opportunity note
Recommendation n° 9: Encourage and facilitate the creation of "legal toolboxes" to ensure the
long-term preservation of free software resulting from research.

FAIR Relevant Achievable Measurable Benefits

R1.1. (meta)data are released with a clear and
accessible data usage license.

*** *** *** ***

Each criteria is evaluated with the following scale:

N/A doesn’t appear
(white)

* observed in a small subset
(one paper)

medium subset (2-3) * large subset (3+
papers)

! disagreeing

52

R1.2. (meta)data are associated with their provenance.

Resource Content

Towards FAIR principles

for research software
Rephrased: “Software metadata include detailed provenance, detail level should be community

agreed.”

“Provenance refers to the origin, source and history of software and its metadata. It is

recommended to use well-known provenance vocabularies, for instance PROV-O [​63​], that are

FAIR themselves. “

“5 recommendations for

FAIR software”
Repository: ​“Using a version control system allows you to easily track changes in your

software, both your own changes as well as those made by collaborators.”

Software citation

principles
“...the software metadata recorded as part of data provenance will overlap the metadata

recorded as part of software citation for the software that was used in the work. The data

recorded for reproducibility should also overlap the metadata recorded as part of software

citation. In general, we intend the software citation principles to cover the minimum of what is

necessary for software citation for the purpose of software identification.”

SSC IG P13 activity “needs metadata that isn't available (dependencies)”

From FAIR research data

toward FAIR and open

research software

Use domain-specific languages for comprehensibility and modularity of research software

Attributing and Referencing

(Research) Software
 ​(not explicitly discussed)

Software vs. data in the

context of citation

“...best practices to facilitate reproducibility of computational science involve archiving of the

following, in durable, plaintext formats:

…

3. descriptive provenance metadata on the software dependencies needed to compile and run

the software as well as any input data dependencies”

The science code manifesto (not explicitly discussed)

CoSO opportunity note (not explicitly discussed)

FAIR Relevant Achievable Measurable Benefits

R1.2. (meta)data are associated with their provenance. *** ** * **

Each criteria is evaluated with the following scale:

N/A doesn’t appear
(white)

* observed in a small subset
(one paper)

medium subset (2-3) * large subset (3+
papers)

! disagreeing

53

https://content.iospress.com/articles/data-science/ds190026#ref063

R1.3. (meta)data meet domain-relevant community standards.

Resource Content

Towards FAIR principles

for research software
Rephrased: “Software metadata and documentation meet domain-relevant community

standards.”

“ ​we consider aspects of installation instructions (R1.3), software dependencies (I4S), and

licensing (R1.1) as part of other principles here, rather than adding another Accessibility

principle.”

“5 recommendations for

FAIR software”
Registry: "What metadata does the community registry offer? This is sometimes described in

the documentation of the registry, but you can also see for yourself by installing a tool like the

OpenLink Structured Data Sniffer. "

Software citation

principles
“Existing efforts around metadata standards. Producing detailed specifications and

recommendations for possible metadata standards to support software citation was not within

the scope of this working group. However some discussion on the topic did occur and there was

significant interest in the wider community to produce standards for describing research

software metadata.”

SSC IG P13 activity ​(not explicitly discussed)

From FAIR research data

toward FAIR and open

research software

“Follow good software engineering practices to achieve high software quality

Use software virtualization techniques such as Docker to support reusability across platforms

Use software-as-a-service platforms such as BinderHub for immediate execution

Use research software observatories for online analytics

Participate in artifact evaluation processes to evaluate reusability”

Attributing and Referencing

(Research) Software
 ​(not explicitly discussed)

Software vs. data in the

context of citation
 ​(not explicitly discussed)

The science code manifesto
“There are many well-known open-source licenses: use of a well-known existing license is
strongly recommended.”

CoSO opportunity note
“Recommendation n° 8: Define a common strategy and procedures for evaluating open source
software making it sustainable and encouraging technology transfer.”

FAIR Relevant Achievable Measurable Benefits

R1.3. (meta)data meet domain-relevant community
standards

*** ** * **

Each criteria is evaluated with the following scale:

N/A doesn’t appear
(white)

* observed in a small subset
(one paper)

medium subset (2-3) * large subset (3+
papers)

! disagreeing

54

Annex C: Infrastructures and existing implementations catering
software

C.1 Software archives and institutional repositories
C.1.1 Software Heritage archive

Service Summary

Software Heritage (SWH) is a universal software source code archive.
Aims & Scope:

● SWH archive operates only on software source code artifacts
● The source code and complete history is archived for long-term preservation
● All software artifacts are referenceable with the SWHID intrinsic identifier
● The software is publicly available and accessible online (not in an arctic vault)

URL:​ ​https://archive.softwareheritage.org/

Users

Academia, industry, cultural heritage

Service components

● automatic pull from different forges (GitHub,
GitLab, BitBucket),

● intrinsic metadata is extracted from the
content itself (not yet visible on the web-app),

● deposited artifacts are accepted only from
known sources where metadata was
moderated and curated

● Save code mechanism for git, svn and
mercurial repositories

Examples (in bold the core intrinsic identifier) 43

● Revision SWHID:
swh:1:rev:0064fbd0ad69de205ea6ec6

999f3d3895e9442c2;​origin=https://gith

ub.com/rdicosmo/parmap

● Snapshot SWHID:
swh:1:snp:c7c108084bc0bf3d81436bf980b46e

98bd338453​;origin=https://github.com/darkta
ble-org/darktable/

● Code fragment SWHID:
swh:1:cnt:64582b78792cd6c2d67d35da5a11b

b80886a6409​;origin=https://github.com/virtua
lagc/virtualagc;lines=245-261/

Purpose

Software Heritage's goal is to collect, preserve and
share all software source code publicly available.
SWH is an automatic archive without manual curation
of content or metadata

Adoption

The list of repositories which are archived in SWH
is long, it includes GitHub, GitLab, Gitorious and
more.

Also HAL the national french archives and IPOL 44 45

journal deposit software in SWH . 4647

Documentation

● https://www.softwareheritage.org/save-
and-reference-research-software/

● https://docs.softwareheritage.org/devel/

43 ​https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
44 ​https://hal.archives-ouvertes.fr/
45 ​https://www.ipol.im/
46 ​https://www.softwareheritage.org/2018/09/28/depositing-scientific-software-into-software-heritage/
47 ​https://www.softwareheritage.org/2020/06/11/ipol-and-swh/

55

https://archive.softwareheritage.org/
https://archive.softwareheritage.org/swh:1:rev:0064fbd0ad69de205ea6ec6999f3d3895e9442c2;origin=https://github.com/rdicosmo/parmap
https://archive.softwareheritage.org/swh:1:rev:0064fbd0ad69de205ea6ec6999f3d3895e9442c2;origin=https://github.com/rdicosmo/parmap
https://archive.softwareheritage.org/swh:1:rev:0064fbd0ad69de205ea6ec6999f3d3895e9442c2;origin=https://github.com/rdicosmo/parmap
https://archive.softwareheritage.org/swh:1:rev:0064fbd0ad69de205ea6ec6999f3d3895e9442c2;origin=https://github.com/rdicosmo/parmap
https://archive.softwareheritage.org/swh:1:snp:c7c108084bc0bf3d81436bf980b46e98bd338453;origin=https://github.com/darktable-org/darktable/
https://archive.softwareheritage.org/swh:1:snp:c7c108084bc0bf3d81436bf980b46e98bd338453;origin=https://github.com/darktable-org/darktable/
https://archive.softwareheritage.org/swh:1:snp:c7c108084bc0bf3d81436bf980b46e98bd338453;origin=https://github.com/darktable-org/darktable/
https://archive.softwareheritage.org/swh:1:snp:c7c108084bc0bf3d81436bf980b46e98bd338453;origin=https://github.com/darktable-org/darktable/
https://archive.softwareheritage.org/swh:1:cnt:64582b78792cd6c2d67d35da5a11bb80886a6409;origin=https://github.com/virtualagc/virtualagc;visit=swh:1:snp:cdcd2bc43331a436e8c659ba93175ef7d7eb339b;anchor=swh:1:rev:4e5d304eb7cd5589b924ffb8b423b6f15511b35d;path=/;lines=245-261/
https://archive.softwareheritage.org/swh:1:cnt:64582b78792cd6c2d67d35da5a11bb80886a6409;origin=https://github.com/virtualagc/virtualagc;visit=swh:1:snp:cdcd2bc43331a436e8c659ba93175ef7d7eb339b;anchor=swh:1:rev:4e5d304eb7cd5589b924ffb8b423b6f15511b35d;path=/;lines=245-261/
https://archive.softwareheritage.org/swh:1:cnt:64582b78792cd6c2d67d35da5a11bb80886a6409;origin=https://github.com/virtualagc/virtualagc;visit=swh:1:snp:cdcd2bc43331a436e8c659ba93175ef7d7eb339b;anchor=swh:1:rev:4e5d304eb7cd5589b924ffb8b423b6f15511b35d;path=/;lines=245-261/
https://archive.softwareheritage.org/swh:1:cnt:64582b78792cd6c2d67d35da5a11bb80886a6409;origin=https://github.com/virtualagc/virtualagc;visit=swh:1:snp:cdcd2bc43331a436e8c659ba93175ef7d7eb339b;anchor=swh:1:rev:4e5d304eb7cd5589b924ffb8b423b6f15511b35d;path=/;lines=245-261/
https://www.softwareheritage.org/save-and-reference-research-software/
https://www.softwareheritage.org/save-and-reference-research-software/
https://docs.softwareheritage.org/devel/
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://hal.archives-ouvertes.fr/
https://www.ipol.im/
https://www.softwareheritage.org/2018/09/28/depositing-scientific-software-into-software-heritage/
https://www.softwareheritage.org/2020/06/11/ipol-and-swh/

C.1.2 Zenodo

Service Summary

Zenodo is an open dissemination research data repository for the preservation and making available of research,
educational and informational content.
Aims & Scope:

● Provide a platform for everyone to engage in Open Science
● Allows upload of all data file formats and content type
● Assign persistent identifiers (DOIs) to all records to allow for citability
● Preserve deposited content for the lifetime of the repository

URL:​ ​https://zenodo.org/

Users

Academia, industry, cultural heritage, any non-military users

Service components

● automatic integration with GitHub, see
https://guides.github.com/activities/citabl
e-code/

● Storage and preservation in CERN Data
Centres

● Versioning of records, including concept
DOIs

● Curation of records in communities
● Citation recommendations and usage

statistics
● API and OAI-PMH for machine exchange

Examples
● Software:

https://doi.org/10.5281/zenod

o.4088798

● Community:
https://zenodo.org/communities/fairsfair

Purpose

Allow everyone to share their outputs openly (up to 50GB
per file), exposing provided metadata in standardised
formats.

Adoption

More than 1,5 mio records have been shared via
zenodo so far, most of them openly accessible.

Documentation

https://about.zenodo.org/

56

https://zenodo.org/
https://guides.github.com/activities/citable-code/
https://guides.github.com/activities/citable-code/
https://doi.org/10.5281/zenodo.4088798
https://doi.org/10.5281/zenodo.4088798
https://zenodo.org/communities/fairsfair
https://about.zenodo.org/

C.2 Software journals and publishers

C.2.1 ​SoftwareX

Service Summary

SoftwareX is an academic journal which focuses specifically on the publication of research software. As per the
Aims & Scope:

● The software is given a stamp of scientific relevance, and provided with a peer-reviewed recognition
of scientific impact;

● The software developers are given the credits they deserve;
● The software is citable, allowing traditional metrics of scientific excellence to apply;
● The academic career paths of software developers are supported rather than hindered;
● The software is publicly available for inspection, validation, and re-use.

URL:​ ​https://www.journals.elsevier.com/softwarex

Users

Academic researchers of all disciplines.

Service components

● Publication of a short, descriptive article on
Elsevier ScienceDirect’s platform (including
structured metadata) called an “Original
software publication”

● An open source software distribution on the
journals’ Github space

Examples

● https://doi.org/10.1016/j.softx.2020.100561
● https://doi.org/10.1016/j.softx.2015.06.001

Purpose

The journal aims to disseminate research
software, promote re-use of software and provide
a mechanism for researchers to receive academic
credit (in the sense of a citable DOI) for sharing
their code.

Adoption

According to a ScienceDirect search query,
content has grown from 15 publications in 2015
to 100+ this year. (Metrics on readership and
software reuse are not readily available)

Documentation

● Journal homepage:
https://www.journals.elsevier.com/softwarex

57

https://www.journals.elsevier.com/softwarex
https://doi.org/10.1016/j.softx.2020.100561
https://doi.org/10.1016/j.softx.2015.06.001
https://www.journals.elsevier.com/softwarex

C.2.2 Journal of Open Source Software (JOSS)

Service Summary

The Journal of Open Source Software (JOSS) is a developer friendly, open access journal for research
software packages. It is committed to publishing quality research software with zero article
processing charges or subscription fees. JOSS JOSS publishes articles about research software, which
include a short paper and the software itself, both of which are ​openly ​ peer-reviewed. This definition
includes software that: solves complex modeling problems in a scientific context (physics,
mathematics, biology, medicine, social science, neuroscience, engineering); supports the functioning
of research instruments or the execution of research experiments; extracts knowledge from large
data sets; offers a mathematical library; or similar.

URL: ​https://joss.theoj.org

Users

Scholarly software developers who develop
software for research in all disciplines.

Service components

● Publication of a short paper on the journal's
platform, registered with Crossref, with both the
paper text and DOI metadata linking to a deposit
of the software in a preservation repository that
provides a DOI (e.g., Zenodo) and to the live
version of the software (e.g., on GitHub).

● JOSS articles, metadata, and reviews are
archived with Portico.

Examples

● https://doi.org/10.21105/joss.01686
● https://doi.org/10.21105/joss.00884

Purpose

The journal aims to provide an easy-to-use, zero
cost to submitters and readers, fully open means
for research software developers to get
recognition and scholarly credit for their software
work, via the academic publishing and citation
system.

Adoption

JOSS started in May 2016, and published about
100 papers in its first year. As of 16 October 2020,
it has published 1053 papers.

Documentation

● Journal homepage: ​https://joss.theoj.org
● Documentation: ​https://joss.readthedocs.io/
● Publication Ethics:

https://joss.theoj.org/about#ethics

58

https://joss.theoj.org/
https://doi.org/10.21105/joss.01686
https://doi.org/10.21105/joss.00884
https://joss.theoj.org/
https://joss.readthedocs.io/
https://joss.theoj.org/about#ethics

C.3 ​Software registries / indexers /aggregators

C.3.1 swMath

Service Summary

Provides access to an extensive database of information on actual use (and citation) of mathematical software.
Also includes a systematic linking of software packages with relevant mathematical publications. intention is also
to offer a list of all publications that refer to a software recorded in swMATH
Aims & Scope:

● Mathematical software registry
● Created almost exclusively from citations in publication
● Linked with zbMATH

URL:​ ​https://swmath.org/

Users

Academia, industry, cultural heritage institutions - everyone
conducting and supporting research

Service components

● Search function that searches the
following metadata fields: software name,
software authors, description, keywords,
programming language and MSC
classification ("Mathematics Subject
Classification")

● Indexed in search engines
● Permanent link to archived code in SWH
● Uses the MSC classification, widely used

by mathematical reviewing services and
many others to categorize items in the
mathematical sciences literature.

● API allows to get the related software, the
time chart data or the last 10 publications
of each software.

● Software is linked to entities in WikiData
Examples

● SemiPar software:
https://swmath.org/software/7116

● SageMath software:
https://swmath.org/software/825

Purpose

swMath is a software registry for research software in the
mathematics domain.

Adoption

Free service, open feedback and possible to contribute

Documentation

Bönisch, S., Brickenstein, M., Greuel, G.-M., & Sperber, W.
(2012). SwMATH – citations for your mathematical
software. journalId:00006143, 2012.
https://doi.org/10.1007/BF03345852

Bönisch, S., Brickenstein, M., Chrapary H., Greuel G.-M., &
Sperber W.(2013). “SwMATH – A New Information
Service for Mathematical Software.” In Intelligent
Computer Mathematics, edited by Jacques Carette,
David Aspinall, Christoph Lange, Petr Sojka, and
Wolfgang Windsteiger, 7961:369–73. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer
Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-39320-4_31.

Chrapary, H., Dalitz, W., Neun, W., & Sperber W. (2017).
Design, Concepts, and State of the Art of the
swMATH Service. Math.Comput.Sci. 11, 469–481.
https://doi.org/10.1007/s11786-017-0305-5

59

https://swmath.org/
https://swmath.org/software/7116
https://swmath.org/software/825

C.4 ​Research software training

C.4.1 The Carpentries

Service Summary

The Carpentries aim to be the leading inclusive community teaching data and coding skills. They build global
capacity in essential data and computational skills for conducting efficient, open, and reproducible research.
Aims & Scope:

● Training and fostering a community
● Openly licensed, community developed material
● Lessons on software, data use and analysis and for the library community

URL:​ ​https://carpentries.org/

Users

Academia, industry, cultural heritage institutions - everyone
conducting and supporting research

Service components

● Openly licensed training material on basic
coding, version control with git, licensing
and data analysis using a variety of
software

● Instructor training
● Workshops delivering the training

material virtually or face to face

Examples
● Workshop webpage:

https://softwaresaved.github.io/2020-10-
13-ssi-online/

● Lesson example:
○ https://datacarpentry.org/OpenR

efine-ecology-lesson/02-filter-ex
clude-sort/index.html

○ https://swcarpentry.github.io/r-n
ovice-gapminder/

Purpose

The Carpentries teaches foundational coding, and data
science skills to researchers worldwide.

Adoption

Between 2012 and 2019, they have run 2300 workshops in
61 countries and developed 33 official lessons and more in
development.

Documentation

An overview of curricula is available at
https://carpentries.org/workshops-curricula/

60

https://carpentries.org/
https://softwaresaved.github.io/2020-10-13-ssi-online/
https://softwaresaved.github.io/2020-10-13-ssi-online/
https://datacarpentry.org/OpenRefine-ecology-lesson/02-filter-exclude-sort/index.html
https://datacarpentry.org/OpenRefine-ecology-lesson/02-filter-exclude-sort/index.html
https://datacarpentry.org/OpenRefine-ecology-lesson/02-filter-exclude-sort/index.html
https://swcarpentry.github.io/r-novice-gapminder/
https://swcarpentry.github.io/r-novice-gapminder/
https://carpentries.org/workshops-curricula/

Bibliography

Allen, A., and Schmidt, J. (2015). Looking Before Leaping : Creating a Software Registry. ​Journal

of Open Research Software​, ​3​(e15). ​http://dx.doi.org/10.5334/jors.bv
Alliez, P., Di Cosmo, R., Guedj, B., Girault, A., Hacid, M.-S., Legrand, A., & Rougier, N. (2019).
Attributing and Referencing (Research) Software : Best Practices and Outlook From Inria.
Computing in Science Engineering ​, ​22​(1), 39‑52. ​https://doi.org/10.1109/MCSE.2019.2949413
Barnes N., D. Jones, P. Norvig, C. Neylon, R. Pollock, J. Jackson, V. Stodden, and P. Suber. (2011)
Science code manifesto. version 1.0. http://sciencecodemanifesto.org. Accessed: July 15th 2020
Ballhausen, M. (2019). Free and open source software licenses explained. Computer, 52(6),
82-86.
Bönisch, S., Brickenstein, M., Greuel, G.-M., & Sperber, W. (2012). SwMATH – citations for your
mathematical software. ​journalId:00006143​, ​2012​. ​https://doi.org/10.1007/BF03345852
Bönisch, S., Brickenstein, M., Chrapary H., Greuel G.-M., & Sperber W.(2013). “SwMATH – A New
Information Service for Mathematical Software.” In Intelligent Computer Mathematics, edited
by Jacques Carette, David Aspinall, Christoph Lange, Petr Sojka, and Wolfgang Windsteiger,
7961:369–73. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-39320-4_31​.
Chrapary, H., Dalitz, W., Neun, W., & Sperber W. (2017). Design, Concepts, and State of the Art
of the swMATH Service. ​Math.Comput.Sci. ​ 11, 469–481.
https://doi.org/10.1007/s11786-017-0305-5
Clément-Fontaine, Mélanie, Roberto Di Cosmo, Bastien Guerry, Patrick Moreau, and François
Pellegrini. (2019). Encouraging a Wider Usage of Software Derived from Research. Research
Report. Committee for Open Science’s Free Software and Open Source Project Group.
https://hal.archives-ouvertes.fr/hal-02545142
Di Cosmo R. (2020) Archiving and Referencing Source Code with Software Heritage. In: Bigatti A.,
Carette J., Davenport J., Joswig M., de Wolff T. (eds) Mathematical Software – ICMS 2020. ICMS
2020. Lecture Notes in Computer Science, vol 12097. Springer, Cham.
https://doi.org/10.1007/978-3-030-52200-1_36
Di Cosmo R., Gruenpeter M., Marmol B., Monteil A., Romary L., Sadowska J. (2020a) Curated
Archiving of Research Software Artifacts : lessons learned from the French open archive (HAL).
(2020a).​10.2218/ijdc.v15i1.698
Di Cosmo, R., Gruenpeter, M., & Zacchiroli, S. (2020b). Referencing Source Code Artifacts : A
Separate Concern in Software Citation. ​Computing in Science & Engineering ​.
https://doi.org/10.1109/MCSE.2019.2963148​ ​https://hal.archives-ouvertes.fr/hal-02446202
Di Cosmo, R. and Zacchiroli, S. (2017). Software Heritage: Why and How to Preserve Software
Source Code. iPRES 2017 - 14th International Conference on Digital Preservation, Sep 2017,
Kyoto, Japan. pp.1-10. ​⟨hal-01590958⟩
European Commission (2018) Turning FAIR into reality. Final Report and Action Plan from the
European Commission Expert Group on FAIR data . Luxembourg Publication Office of the
European Union, Luxembourg, 78 pp. https://doi.org/10.2777/1524
FAIRsFAIR .(2020). ‘About’. Retrieved from ​https://www.fairsfair.eu

61

http://dx.doi.org/10.5334/jors.bv
https://doi.org/10.1109/MCSE.2019.2949413
https://doi.org/10.1007/BF03345852
https://doi.org/10.1007/978-3-642-39320-4_31
https://doi.org/10.1007/s11786-017-0305-5
https://hal.archives-ouvertes.fr/hal-02545142
https://dx.doi.org/10.2218/ijdc.v15i1.698
https://doi.org/10.1109/MCSE.2019.2963148
https://hal.archives-ouvertes.fr/hal-02446202
https://hal.archives-ouvertes.fr/hal-01590958
https://www.fairsfair.eu/

FAIR Practice TF: Chue Hong, Neil, Cozzini, Stefano, Hoffman-Sommer, Marta, Hooft, Rob,
Lembinen, Liisi, … Teperek, Marta. (2020). Six Recommendations for Implementation of FAIR
Practice. ​European​ Commission Library doi: 10.2777/986252
Gruenpeter M. and Thornton K. (2018) Pathways for Discovery of Free Software (slide deck from
LibrePlanet 2018). ​https://en.wikipedia.org/wiki/File:Pathways-discovery-free.pdf accessed
September 22nd 2020.
Hasselbring, W., Carr, L., Hettrick, S., Packer, H., & Tiropanis, T. (2020). From FAIR research data
toward FAIR and open research software, it - Information Technology, 62(1), 39-47. doi:
https://doi.org/10.1515/itit-2019-0040
Hervé L'Hours, & Ilona von Stein. (2020). FAIR Ecosystem Components: Vision (Version 02.00).
Zenodo. ​http://doi.org/10.5281/zenodo.3734273
Hinsen, K. (2019). Dealing With Software Collapse, in ​Computing in Science & Engineering ​, vol.
21, no. 3, pp. 104-108, 1 May-June 2019, doi: 10.1109/MCSE.2019.2900945.
Jones B. M., Boettiger C., Cabunoc Mayes A., Smith, A., Slaughter, P., Niemeyer, K., Gil Y., Fenner
M., Nowak, K., Hahnel, M., Coy, L., Allen A., Crosas, M., Sands A., Chue Hong N., Cruse P.,Katz D.
S., Goble, C. (2017). CodeMeta: an exchange schema for software metadata. Version 2.0. KNB
Data Repository. doi:10.5063/schema/codemeta-2.0
Katz, D. S., Bouquin, D., Hong, N. P. C., Hausman, J., et al. (2019). Software citation
implementation challenges. ​arXiv preprint arXiv:1905.08674​. ​https://arxiv.org/abs/1905.08674
Katz DS, Niemeyer KE, Smith AM, Anderson WL, Boettiger C, Hinsen K, Hooft R, Hucka M, Lee A,
Löffler F, Pollard T, Rios F. (2016). Software vs. data in the context of citation. PeerJ Preprints
4:e2630v1 ​https://doi.org/10.7287/peerj.preprints.2630v1
Koers, H., Gruenpeter, M., Herterich, P., Hooft, R., Jones, S., Parland-von Essen, J. & , Staige, C.,
(2020). Assessment report on ‘FAIRness of services’. FAIRsFAIR.
https://doi.org/10.5281/zenodo.3688762
Lamprecht, A.-L., Garcia, L., Kuzak, M., Martinez, C., Arcila, R., Martin Del Pico, E., Dominguez
Del Angel, V., van de Sandt, S., Ison, J., Martinez, P. A., McQuilton, P., Valencia, A., Harrow, J.,
Psomopoulos, F., Gelpi, J. L., Chue Hong, N., Goble, C., & Capella-Gutierrez, S. (2019). Towards
FAIR principles for research software. Data Science, Preprint, 1–23.
https://doi.org/10.3233/DS-190026
Lehväslaiho, H., Parland-von Essen, J., Behnke, C., Laine, H., Riungu-Kalliosaari, L., Le Franc, Y., &
Staiger, C.. (2019). D2.1 Report on FAIR requirements for persistence and interoperability 2019
(Version v1.0 Draft). FAIRsFAIR. ​https://doi.org/10.5281/zenodo.3557381
Research Data Alliance/FORCE11 Software Source Code Identification WG, Allen, A., Bandrowski,
A., Chan, P., Cosmo, R. D., Fenner, M., Garcia, L., Gruenpeter, M., Jones, C. M., Katz, D. S., Kunze,
J., Schubotz & M., Todorov, I. T. (2020). Use cases and identifier schemes for persistent software
source code identification (V1.0). Research Data Alliance.​ https://doi.org/10.15497/RDA00053
Smith, A. M., Katz, D. S., & Niemeyer, K. E. (2016). Software citation principles. ​PeerJ Computer

Science​, ​2:e86​. https://doi.org/10.7717/peerj-cs.86
Software Heritage blog (2020) Intrinsic and Extrinsic identifiers
https://www.softwareheritage.org/2020/07/09/intrinsic-vs-extrinsic-identifiers/

62

http://doi.org/10.5281/zenodo.3931993European
https://en.wikipedia.org/wiki/File:Pathways-discovery-free.pdf
https://doi.org/10.1515/itit-2019-0040
http://doi.org/10.5281/zenodo.3734273
https://arxiv.org/abs/1905.08674
https://doi.org/10.7287/peerj.preprints.2630v1
https://www.zotero.org/google-docs/?elo4IB
https://www.zotero.org/google-docs/?elo4IB
https://www.zotero.org/google-docs/?elo4IB
https://doi.org/10.3233/DS-190026
https://doi.org/10.5281/zenodo.3557381
https://doi.org/10.15497/RDA00053
https://www.softwareheritage.org/2020/07/09/intrinsic-vs-extrinsic-identifiers/

 Wilkinson, M., Dumontier, M., Aalbersberg, IJJ., Appleton, G., Axton, M., Baak, A. et al. (2016).
The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3, 160018
(2016). ​https://doi.org/10.1038/sdata.2016.18

63

https://doi.org/10.1038/sdata.2016.18

