Foreword

As we stand at the threshold of another year of innovation and collaboration, it’s a privilege to reflect on the journey of Software Heritage. In 2023, we continued working on our long-term foundational mission, with more than 17 billion unique source files from over 270 million projects now safely archived. The “add forge now” functionality, now fully in production, has enabled the complete archiving of over 200 new forges.

A landmark achievement of 2023 was the inauguration of the first international mirror of Software Heritage at ENEA. This milestone marks the completion of a journey that began in 2019 and paves the way for establishing a mirror network that will place the vast expanse of humankind’s software heritage beyond the reach of accident.

A key component of Software Heritage is the SWHID, an intrinsic identifier that is a cornerstone in ensuring the long-term traceability and reliability of all artifacts stored in the archive. This year marked a significant milestone in a global effort to make it widely available and usable: the SWHID, now referred to as the “software hash identifier”, has been precisely described in an open specification produced by a broad working group.

Our community has always been the driving force behind our mission. This year, we count more than 30 ambassadors who have been instrumental in championing our vision worldwide. Their dedication and enthusiasm have been pivotal in broadening our impact and fostering a more inclusive and connected community.

A significant endorsement has been the selection as a key infrastructure for Open Science by the Sustainability Coalition for Open Science Services (SCOSS). This acknowledgment is not just an honor, but a responsibility that we embrace wholeheartedly. It aligns perfectly with our vision of making software source code an accessible and integral part of scientific and technological discourse.

2023 also marked our foray into a new domain with the publication of our statement on large language models for code. We acknowledge the vast potential that the archive offers in this realm and are committed to making it beneficial for all of humankind.

As we look ahead, our resolve is stronger than ever. We are not just preserving source code; we are safeguarding a digital legacy for future generations. Our journey is made possible by the unwavering support of our members and sponsors, the collaboration of our partners, and the enthusiasm of our community.

We invite you to join us in this ongoing adventure, to contribute, to use, and to spread the word about our mission. With each passing year, our collective effort becomes more crucial, and our impact more profound.

Roberto Di Cosmo
Co-founder & CEO
Software Heritage
WE HARVEST PUBLICLY AVAILABLE SOURCE CODE FROM MANY SOFTWARE PROJECTS AND KEEP UP WITH DEVELOPMENT HAPPENING THERE. AS OF TODAY OUR ARCHIVE ALREADY CONTAINS AND KEEPS SAFE FOR YOU:

<table>
<thead>
<tr>
<th>Count</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17,628,066,609</td>
<td>Source files</td>
</tr>
<tr>
<td>3,746,371,885</td>
<td>Commits</td>
</tr>
<tr>
<td>274,656,598</td>
<td>Projects</td>
</tr>
</tbody>
</table>

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>About</td>
</tr>
<tr>
<td>8</td>
<td>Sponsors</td>
</tr>
<tr>
<td>10</td>
<td>Mission</td>
</tr>
<tr>
<td>12</td>
<td>Software Heritage in a nutshell</td>
</tr>
<tr>
<td>15</td>
<td>Technology highlights</td>
</tr>
<tr>
<td>16</td>
<td>Software Hash Identifier</td>
</tr>
<tr>
<td>18</td>
<td>Services</td>
</tr>
<tr>
<td>20</td>
<td>Culture and Education</td>
</tr>
<tr>
<td>25</td>
<td>Mirrors</td>
</tr>
<tr>
<td>27</td>
<td>Key findings</td>
</tr>
<tr>
<td>28</td>
<td>Industry</td>
</tr>
<tr>
<td>32</td>
<td>Collaboration and Community</td>
</tr>
</tbody>
</table>
About Us

Software Heritage is a non-profit multi-stakeholder initiative launched by Inria in partnership with UNESCO, hosted by the Inria Foundation, and with a growing number of partners. It is building the universal archive and knowledge base of software source code, at the service of society as a whole.

- Source Files 17,628,066,609
- Commits 3,746,371,885
- Projects 274,656,598
- Directories 14,171,783,106
- Authors 69,063,036
- Releases 81,409,168

The Software Heritage archive is the largest collection of publicly available source code ever built, containing, as of December 2023, over 17 billion unique source files from over 274 million software origins.

The Software Heritage Symposium and Summit 2023 took place at UNESCO’s headquarters on February 7th bringing together advisors, sponsored ambassadors, and the entire community.

Supported by

Advisors 4
Team members 17
Visiting hackers 3
Ambassadors 33
Sponsors worldwide 22

Hosted by

Inria

In collaboration with

UNESCO

Software Heritage has been launched by Inria in 2015.
Software is key in CEA’s commitment to transferring knowledge from research to industry. With the Software Heritage Foundation, we stand behind the preservation and sharing of this knowledge.

Microsoft has been involved in open source initiatives by enabling, integrating, releasing and contributing to many open source projects and communities for well over a decade. We applaud the Software Heritage as an open project that will help curate and conserve human knowledge in the form of code for future generations as well as help today’s generations of developers find and re-use code worldwide.

Microsoft

Intel has been at the forefront of open source development for nearly two decades and today is a top contributor to the Linux kernel, as well as dozens of leading projects across technology, markets and industries. Intel is committed to support Software Heritage in its mission to collect, preserve and share code, as we believe open source is critical in transforming our world through innovation in enterprise, consumer technology, the Internet of Things and beyond.

Intel

Huawei has been working with the open source communities for decades: we are active contributors in projects ranging from the Linux kernel to cloud native computing and machine learning, and we will keep increasing our participation and investment in this open innovation world. We share Software Heritage’s vision that publicly available source code, including open source software, is a precious heritage of mankind, and should be collected, preserved and shared for the benefit of all.

Huawei

Intel has been at the forefront of open source development for nearly two decades and today is a top contributor to the Linux kernel, as well as dozens of leading projects across technology, markets and industries.

Intel

Huawei has been working with the open source communities for decades: we are active contributors in projects ranging from the Linux kernel to cloud native computing and machine learning, and we will keep increasing our participation and investment in this open innovation world. We share Software Heritage’s vision that publicly available source code, including open source software, is a precious heritage of mankind, and should be collected, preserved and shared for the benefit of all.

Huawei

At ServiceNow we recognize the value and importance of preserving open-source software (...). We firmly believe in the value of Software Heritage to cultivate goodwill and collaboration within the technology ecosystem, while promoting a more sustainable and open software industry.

At ServiceNow

Firmly committed to open science, which is at the heart of its project, Sorbonne University supports Software Heritage. By helping to collect and to share software, Software Heritage contributes to one of the key missions of the university: the preservation and transmission of knowledge and of our scientific heritage.

Sorbonne University

By supporting the Software Heritage initiative, Université de Paris continues its commitment to the free and responsible sharing of knowledge and research software.

Université Paris Cité

Gold Sponsors

Silver Sponsors

Bronze Sponsors

Open source software has been one of the instrumental, driving forces of innovation this century. Software Heritage is an important organization for software, (...) Archiving of code in a curated form maintains the technical and scientific knowledge that goes along with the code, preserving the innovation while also providing a means for determining prior art.

openinventionnetwork

Partnering with Software Heritage was a great journey for BigCode and Hugging Face. The foundation’s focus on preservation, reproducibility, availability and traceability mirrors many of the values and mission of Hugging Face as a central platform for sharing and collaborating in the ML community.

Hugging Face

We are aware of the code’s value for our digital transformation, it has become a major asset for the bank and we firmly believe that we must preserve it in the long term. Open Source lies at the heart of our strategy, as it is in line with our needs and our values: team spirit, innovation, responsibility and commitment to better serve our clients.

Software is key in CEA’s commitment to transferring knowledge from research to industry. With the Software Heritage Foundation, we stand behind the preservation and sharing of this knowledge.

Sponsors

Sponsors

Diamond Sponsors

Platinum Sponsors

CNRS’s support to Software Heritage, a universal, open and sustainable software archive, is a natural part of our proactive approach in favour of open science, a necessary revolution in which everyone must play a part.

CNRS

MINISTÈRE DE L’ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE

The National Open Science Plan was launched on 4 July 2018 by the Minister of Higher Education, Research and Innovation. This plan includes a provision to support Software Heritage, an initiative that we consider a major pillar of open science. In addition to enabling open access to publications and research data, making research software source code openly available is critical to success of the open science program that we are collectively building.

MINISTÈRE DE L’ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE

Software Heritage is an important organization for software, (...). Archiving of code in a curated form maintains the technical and scientific knowledge that goes along with the code, preserving the innovation while also providing a means for determining prior art.

openinventionnetwork

Partnering with Software Heritage was a great journey for BigCode and Hugging Face. The foundation’s focus on preservation, reproducibility, availability and traceability mirrors many of the values and mission of Hugging Face as a central platform for sharing and collaborating in the ML community.

Hugging Face

We are aware of the code’s value for our digital transformation, it has become a major asset for the bank and we firmly believe that we must preserve it in the long term. Open Source lies at the heart of our strategy, as it is in line with our needs and our values: team spirit, innovation, responsibility and commitment to better serve our clients.

Software Heritage
Programs are written for people to read, and only accessorily for machines to execute

— Harold Abelson

OUR MISSION

Our ambition is to **collect, preserve, and share all software** that is publicly available in source code form. On this foundation, a wealth of applications can be built, ranging from cultural heritage and education to industry, from science to public administration, and more.

Collect

Software is the fabric that binds together our digital lives. Any software component may turn out to be essential in the future, so we **collect all software** that is publicly available in source code form, and we will encourage the construction of curated archives on top of Software Heritage. We keep track of the **origin of software** we archive and store its full development history: this precious meta-information will be carefully harvested and structured for future use.

Preserve

Software is fragile and we are unfortunately starting to lose it, sometimes massively, when popular code hosting platforms shut down or reduce operations. We **preserve software**, because it contains our technical and scientific knowledge. We preserve software because it is the means of accessing all of our knowledge. We know that for this to be sustainable, a **vast collective effort** is needed, and we will release as **free/open source software** all the software we write for the needs of Software Heritage and openly describe our technical architecture and processes. We are building an open network of peers and mirrors that share with us the responsibility of maintaining several copies of all the software we collect.

Share

We are building the largest archive of software source code ever assembled. We will **index, organize, make referenceable and accessible** all of this precious heritage. We provide the **SWHID unique identifiers**, intrinsically bound to the software components, and that need no central registry, to ensure that a resilient web of knowledge can be built on top of the Software Heritage archive. A variety of services, ranging from documentation to classification, from search to distribution, will progressively be developed to release all the potential of this Library of Alexandria of Software.
We are building an essential infrastructure, that is meant to ensure three main properties for the source code we collect:

- **Availability**
 The code will be stored, preserved and made accessible on the long term.

- **Traceability**
 Each software component will get a unique identifier, called SWHID, that can be relied upon in the long term.

- **Uniformity**
 Despite the great variety of origins, all of the source code collected in our archive will be accessed through the same uniform Application Programmer’s Interface (API).

Software Heritage: Ethical Charter for using the archive data

1. **Avoid Harm**: Users must consider potential ethical implications of their data usage, refraining from actions that may cause harm, even with well-intentioned research.

2. **Protect Personal Data**: Uphold policies to protect personal data within the archive, respecting the individuals contributing to the shared software commons.

3. **Minimize Distribution**: Discourage extensive redistribution of the Archive. Use persistent identifiers within Software Heritage to maintain data stability over time.

4. **Responsible Data Derivatives**: Users are responsible for ethically handling derived data from their analysis, refraining from disseminating sensitive information.

A catalog to find them all

Software is spread all around: it is developed on many collaborative platforms and distributed through a variety of different channels. Software Heritage is building a universal catalog to let you find all software projects, no matter where they are developed, or how they are distributed.

An archive to preserve them

Modern software development relies on collaborative platforms, and many of them can be used free of charge. One can create, but also modify or delete projects: they are not archives. In recent years, we have seen several platforms come and go, sometimes suddenly, endangering hundreds of thousands of software projects all at once. Software Heritage is building the universal archive that is needed to ensure we will not lose source code any more.
An instrument to explore and study them

Software underlies all aspects of our modern societies, and in a few decades we have built software systems of incredible complexity: some are huge programs, with tens of millions of lines of code, some are smaller programs, but most rely on hundreds or thousands of other components. We need to master this complexity, in order to build better, safer systems, and protect against malware.

Humankind has been able to build marvelous instruments to explore the universe, now it’s time to build a common, shared infrastructure to explore and study the galaxy of software development. With enough support, Software Heritage can evolve into such an infrastructure.

HUMANKIND HAS BEEN ABLE TO BUILD MARVELOUS INSTRUMENTS TO EXPLORE THE UNIVERSE, NOW IT’S TIME TO BUILD A COMMON, SHARED INFRASTRUCTURE TO EXPLORE AND STUDY THE GALAXY OF SOFTWARE DEVELOPMENT.

All the public code history in a giant graph

Merkle graphs and SWHID

A massive crawler harvests source code from different sources and converts it, with all its development history, into a single giant Merkle directed acyclic graph, using SWHID cryptographic identifiers for all its nodes.

THE SOFTWARE HERITAGE DATA STRUCTURE IS A NATURAL EXTENSION OF MERKLE TREES, A CLASSICAL CRYPTOGRAPHIC CONSTRUCTION, COMBINING A TREE AND A HASH FUNCTION. [MERKLE, 1987]

The process is separated into three phases: listing software sources, scheduling updates and collecting the software artifacts into the archive.

Software Heritage Loaders

A loader is a software component used to ingest a software artifact into the Software Heritage archive, performing the appropriate conversion into the Merkle graph. In 2022 we have unveiled a dedicated page with all available loaders and links to their high-level documentation: https://docs.softwareheritage.org/user/loaders.html

Software Heritage Listers

A lister is a software component used for discovering all software projects available on a code hosting or distribution platform. In 2022 we have unveiled a dedicated page with all the available listers and links to their high-level documentation: https://docs.softwareheritage.org/user/listers.html
The SWHID intrinsic persistent identifiers

All artefacts in the Software Heritage archive get a Software Hash IDentifier, or SWHID for short, that is guaranteed to remain stable persistent over time.

A SWHID consists of two parts, a mandatory core identifier, and an optional list of qualifiers that specify the context and can pinpoint a subpart. One can obtain them using the Permalinks sidebar present on all pages of the Software Heritage archive, and the core identifier can be computed independently by everybody.

Intrinsic and Extrinsic identifiers

Building a solid web of knowledge that lasts over time is of paramount importance. A key component of this web are the links between the different entities, that are designated using systems of identifiers that come in two broad categories:

- **Extrinsic**: use a register to keep the correspondence between the identifier and the object (e.g. URLs, DOIs)
- **Intrinsic**: intimately bound to the designated object, they do not need a register, only agreement on a standard (e.g. git cryptographic hashes)

The software development world has long ago adopted intrinsic digital identifiers, like git hashes, that enable decentralized operations and independent integrity verification. What makes SWHIDs special is that they do not depend at all on the version control system: any software artifact ingested in the Software Heritage archive gets these identifiers.

SWHIDs are now part of the SPDX 2.2 industry specification, and have corresponding properties in Wikidata. A normalization process is underway.

Collaborative work on the SWHID Publicly Available Specification

The SWHID Working Group develops and maintains the Software Hash Identifier specification, fostering an open and collaborative environment for its evolution. Participation in the working group is inclusive, encouraging contributions from a diverse range of individuals via a team mailing list and regular meetings.

The working group has released the SWHID Specification Version 1.1 in November 2023.

The precise identification of software artifacts and versions holds immense significance across various sectors, driving Software Heritage’s core mission to collect, preserve, and share software source code. Utilizing the SWHID (Software Hash IDentifier) for over 30 billion software artifacts, Software Heritage ensures unambiguous referencing and retrieval, facilitating preservation efforts. Through an open process, the SWHID Working Group has crafted a comprehensive specification, recently approved and available online. The evolved term “Software Hash IDentifier” emphasizes its relevance beyond source code and Software Heritage. This milestone marks the beginning, not the end, inviting stakeholders to contribute and shape SWHIDs’ evolution by proposing features that align with their use cases, fostering a collaborative, adaptable identification framework.
Extrinsic metadata are metadata which aren’t found in ctags Deposit Architecture Add Forge Now

Intrinsic metadata are metadata included in the source fossology-license (detecting the license of a file)

Intrinsic descriptive metadata which can be found in mimetype

It will take some time to get to every platform, it is possible to visualize all the visits made to a given location of the code (collected from different forges, package managers and distros) and read the source code content captured.

The SWH archive is the gateway to all captured source code and its entire development history. With the browsable platform, it is possible to visualize all the visits made to a given location of the code (collected from different forges, package managers and distros) and read the source code content captured. https://archive.softwareheritage.org/

SWH provides a Persistent IDentifier (PID) that can identify each and every source code artifact with integrity. called a SWHID. SWHIDs are intrinsic identifiers which are intimately bound to the designated object, they do not need a register, only an agreement on a standard to resolve them. The SWHID can also be used as a badge. Go to the resolver API endpoint https://archive.softwareheritage.org/browse/vault/

The Vault is the service in charge of reconstructing parts of the archive as self-contained bundles, that can then be imported locally. For instance in a Git repository. With the vault, directories and revisions can be downloaded by users on the web platform or through the API. Go to the download directory API endpoint https://archive.softwareheritage.org/devel/vault/

In 2022 was introduced a new feature called “Add Forge Now”, to allow any user to propose the archival of a whole forge. The process follows a validation workflow, including curation, and verification that the forge technology is supported by Software Heritage tools. https://docs.softwareheritage.org/api/

The data model adopted by Software Heritage to represent the information that it collects is centered around the notion of software artifact, using the following canonical names, from bottom to top: contents, directories, files to extract information with the following objectives: swh-indexer module is in charge for computing source code files to extract information with the following objectives:

- mimetypes
- ctags
- language
- fossology-license (detecting the license of a file)
- Intrinsic descriptive metadata which can be found in metadata files in the source code (e.g package.json, codemeta.json, pom.xml)
A shared infrastructure for multiple stakeholders

Culture and education

“[We call to] support efforts to gather and preserve the artifacts and narratives of the history of computing, while the earlier creators are still alive”

— Paris Call on Software Source Code

Cultural heritage is the legacy of physical artifacts and intangible attributes of a group or society that are inherited from past generations, maintained in the present and bestowed for the benefit of future generations. Software in source code form is produced by humans and is understandable by them; it is a special form of knowledge that is at the same time human readable and machine executable. It is an important part of our heritage that we cannot afford to lose. Software is furthermore a key enabler for preserving other parts of our cultural heritage that we would de facto lose if we lose the software needed to access them. Preserving software is essential for preserving our cultural heritage. We have the privilege to be able to talk to most of the people that created this new science and technology of computing, but there we have little time left: it is urgent to take action, and Software Heritage is providing guidance and tools, in addition to the archive infrastructure itself.

1 Available from the UNESCO website as ark:/48223/pf0000366715, 2019.
Software has become a pillar of research, ubiquitous in all its fields: a large part of the technical and scientific knowledge that is being developed today is described in the software source code at a level of detail that is often needed to remove ambiguities that may exist in intuitive descriptions. The preservation of this universal body of knowledge is as essential as preserving research articles and data sets. In the quest to make research results reproducible, and pass knowledge to future generations, we must preserve these three main pillars: research articles that describe the results, the data sets used or produced, and the software source code that embodies the logic of the data transformation.

The Software Pillar of Open Science

Software source code is much more than data, it is a creation of the human ingenuity, and research software needs to be archived, referenced, described and credited in a specific way, with dedicated infrastructures.

The French National Software & Source Code College actively executes the second national plan for Open Science in France. Among its key missions is the commitment to “contribute to the production and dissemination of reference methodologies and good practices relating to the production and governance of projects, including with regard to their referencing, sustainability, enhancement and heritage preservation.”

– French second national plan for Open Science, July 2021

The French National Software & Source Code College actively executes the second national plan for Open Science in France. Among its key missions is the commitment to “contribute to the production and dissemination of reference methodologies and good practices relating to the production and governance of projects, including with regard to their referencing, sustainability, enhancement and heritage preservation.”

– French second national plan for Open Science, July 2021

Open Source Repositories

Open Access Repositories

Open Data Sets Repositories

The French National Software & Source Code College actively executes the second national plan for Open Science in France. Among its key missions is the commitment to “contribute to the production and dissemination of reference methodologies and good practices relating to the production and governance of projects, including with regard to their referencing, sustainability, enhancement and heritage preservation.”

– French second national plan for Open Science, July 2021

Software has become a pillar of research, ubiquitous in all its fields: a large part of the technical and scientific knowledge that is being developed today is described in the software source code at a level of detail that is often needed to remove ambiguities that may exist in intuitive descriptions. The preservation of this universal body of knowledge is as essential as preserving research articles and data sets. In the quest to make research results reproducible, and pass knowledge to future generations, we must preserve these three main pillars: research articles that describe the results, the data sets used or produced, and the software source code that embodies the logic of the data transformation.

The Software Pillar of Open Science

Software has become a pillar of research, ubiquitous in all its fields: a large part of the technical and scientific knowledge that is being developed today is described in the software source code at a level of detail that is often needed to remove ambiguities that may exist in intuitive descriptions. The preservation of this universal body of knowledge is as essential as preserving research articles and data sets. In the quest to make research results reproducible, and pass knowledge to future generations, we must preserve these three main pillars: research articles that describe the results, the data sets used or produced, and the software source code that embodies the logic of the data transformation.

The French National Software & Source Code College actively executes the second national plan for Open Science in France. Among its key missions is the commitment to “contribute to the production and dissemination of reference methodologies and good practices relating to the production and governance of projects, including with regard to their referencing, sustainability, enhancement and heritage preservation.”

– French second national plan for Open Science, July 2021

A multi-year collaboration between the french national open access portal HAL and Software Heritage has led to developing a seamless workflow to archive, reference, describe and cite research software, and the Second National Plan for Open Science now recommends that all french researchers use it and fixes the objective to standardize the SWHID identifiers. In February 2022, Software Heritage has been inscribed in France in the national roadmap of research infrastructures.

The SWHID deposit for Research Software on HAL and Software Heritage is available on all HAL instances since January 2023. Thanks to a close collaboration between the CCSD, IES-INRIA and the Software Heritage team. The SWHID deposit is an addition to the already existing research software deposit as a compressed archive.

IPOL & eLife

IPOL, the Image Processing On Line journal, and eLife, both archive research software and deposit metadata in Software Heritage.

European Projects

Our goal, through participation in EU projects, is to further recognition of the importance of software in research, building tools and services to interconnect with the scholarly ecosystem, and improve guidelines to foster their broad uptake.

FAIR-IMPACT European project, launched in June 2022, has the role to support and disseminate FAIR-enabling practices, tools and services across scientific communities at a European, national and international level. In this project, Software Heritage led the development of the Research Software Metadata Guidelines and contributed to the governance efforts around the CodeMeta initiative.
Adoption and Recognition

The real antidote (to epidemic) is scientific knowledge and global cooperation. — Yuval Noah Harari (on COVID 19)

Joining the SCOSS family
The Global Sustainability Coalition for Open Science Services (SCOSS) board has selected Software Heritage for its 5th pledging round, in November 2023, recognizing Software Heritage as a crucial open science infrastructure ensuring continuous access to the software code outputs generated by researchers worldwide.

SCOSS Members, libraries, archives, institutions and research funders supporting open science can make a difference by committing to fund Software Heritage. Pledge an annual donation for three years, offering a secure financial foundation and access to the dedicated Software Heritage Archives and Libraries Interest Group (ALIG).

Discover the detailed pledging program in the section dedicated to the 5th pledging round on the official SCOSS website.

SciCodes consortium
Software Heritage is part of the SciCodes consortium for scientific software registries and repositories.

BibLaTeX
The Biblatex-software package lets you produce beautiful bibliographic entries for software, and supports SWHID natively. Biblatex-software is integrated in CTAN and TeXLive, and works out of the box in Overleaf. As of April 2022, biblatex-software is integrated in the ACM article style.

French research strategy
Software Heritage has been selected to be included in the French national strategy for research infrastructure, a recognition of the key role that it plays, together with the HAL open access portal, for archiving, referencing, describing and citing research software. The French national research funding agency recommends Software Heritage for all funded projects.

Funding agencies recommendations
ANR 2023 guidelines (p. 17)

MIRRORS

Toward a global infrastructure for research on software source code

"Let us save what remains: not by vaults and locks which fence them from the public eye and use in consigning them to the waste of time, but by such a multiplication of copies, as shall place them beyond the reach of accident."

— Thomas Jefferson

Mirrors
Any data infrastructure faces multiple challenges over time, that can be technical, organizational or legal. To minimize the risks over the long term, we are working to build a resilient system. Due to the nature of the archive, we follow a centralized and replicated approach, establishing a network of independent mirrors of the archive, but we also look at decentralized technologies.

ENEA has launched the inaugural Software Heritage mirror, making it accessible to the public on December 13, 2023.

ENEA opens the first Software Heritage Mirror

A mirror is a full copy of the Software Heritage universal source code archive, operated in agreement with, but independently from the Software Heritage organization.

We look forward to see a variety of institutions from all around the world becoming progressively part of the mirror program.

Mirrors ethical charter

A mirror is a full copy of the Software Heritage universal source code archive, operated in agreement with, but independently from the Software Heritage organization.

ENEA has launched the inaugural Software Heritage mirror, making it accessible to the public on December 13, 2023.

Funding agencies recommendations
ANR 2023 guidelines (p. 17)
The Software Heritage Graph Dataset

The Software Heritage Graph Dataset is a fully deduplicated Merkle DAG representation of the Software Heritage Archive. The dataset links together file contents identifiers, source code directories, Version Control System (VCS) commits tracking evolution over time, up to the full states of VCS repositories as observed by Software Heritage during periodic crawls. The dataset’s contents come from major development forges (including GitHub and GitLab), FOSS distributors (e.g., Debian), and language-specific package managers (e.g., PyPI).

We publish a relational representation of the full archive of Software Heritage as a set of tables. Available as open data in the AWS Open Dataset collection, it makes it easier for researchers to perform large-scale reproducible software studies.

Here is a sample query to find the most popular commit verbs across all the archive.

```sql
SELECT COUNT(*) AS C, word FROM (SELECT word_stem,lower(split_part( trim(from utl.flatten(message)),
', '' ) || ', '' ))) AS word FROM revision WHERE length(message) < 100000000 GROUP BY word ORDER BY C DESC LIMIT 20;
```

Results

|--------|---|

Loading the Software Heritage graph in memory

With over 25 billion nodes and over 350 billion edges, the Software Heritage graph is one of the largest public social graphs available. Thanks to bleeding edge graph compression technology, it can now all fit in 200Gb of memory, and be traversed in just tens of nanoseconds per edge! Java and gRPC APIs available: https://docs.softwareheritage.org/devel/swh-graph/grpc-api.html

The Software Heritage Licence Dataset

6.9 million unique full texts of free and open source license texts, extracted from the Software Heritage archive, with origin information and a ground truth to train machine learning tools.

Key findings

Large reproducible datasets

The lack of reproducibility is a significant program in computer science. We can leverage the Software Heritage archive to build very large, fully reproducible datasets for software engineering research.

Diversity, equality, inclusion in public code

Metadata in the archive can be used to study long-term trends of diversity in software development contributions. For example, male authors contributed 92% of public code commits up to 2019. The ratio of female authors (and their contributions) has grown stably for 15 years reaching for the first time 10% of yearly contributions in 2019, but the COVID-19 pandemic has reversed the trend.

Detecting project forks

Today, developers contribute to open-source projects by working on their own copies, called forks, that can be created in many ways. The Software Heritage archive allows to detect “exogenous” forks across multiple platforms.

R&D Prototyping

The bridge built by Obsidian, opens the way to a solution for IPFS users to access, retrieve, and redistribute SWH archival resources, while leveraging the P2P network to ease the burden of distribution for Software Heritage.
Compliance for source code distribution

Software Heritage simplifies source code distribution

Companies adopting Software Heritage can effectively outsource their source code distribution obligations. Given its mission of long term software preservation, Software Heritage is the perfect steward for the source code it receives.

Software Heritage provides perpetual identifiers

Software Heritage provides uniform, cryptographic identifiers for all of the 10 billion software artefacts it archives. These intrinsic identifiers allow to independently verify the integrity of the software artefacts they denote. Without having to trust any third party.

Software Heritage can be integrated in your compliance process, saving time and resources

Source code deposit in Software Heritage can be integrated in any compliance process. As soon as code is deposited, you get the corresponding intrinsic identifier: that’s the only piece of information you will ever need to be compliant. Software Heritage takes over all other distribution obligations from there. By contrast, typical in-house industry approaches require to maintain dedicated infrastructure and resources over a very long term.

Software Heritage allows you to rely on a mutualised infrastructure

When you join Software Heritage, you adopt an infrastructure that is backed by a growing worldwide community that brings together stakeholders in industry, open science, and digital preservation.

How it works

1. You prepare the complete and corresponding source code (CCS) archive, as usual.
2. You deposit the archive into the Software Heritage platform, using an API that you can integrate with your continuous delivery process.
3. You get back a perpetual identifier that anybody can use to retrieve and browse the source code you deposited.
4. You are happy to know that Software Heritage preserves the archive and will host it forever.

And yes, this seamless process, is fully compliant with all major copyleft licenses!

Annual Report - 2023
Empowering Public Administration

Promoting the sharing of open source solutions created or used by administrations within the European Union [...] results in enhanced collaboration between public administrations

Strasbourg Declaration, May 2022, European Union

Fostering Transparency and Efficiency in the Digital Age

Public administrations strive to make their action transparent to the citizens, while improving the services they provide by sharing and reusing their software.

Transparency and Long-Term Availability

Software Heritage provides the one-stop archive where all public software can be deposited and referenced, open to all, with the guarantee that it will not disappear.

The Open Source mission in the French DINUM uses Software Heritage to systematically archive the open source software of the French public administrations.

Deposit and Sharing of Metadata

Public administrations can deposit qualified metadata in the Archive, in machine readable form, enabling sharing and reuse of information across administrations, countries and continents.

Software Heritage Statement on Large Language Models for Code

As we strive to preserve this vital resource for future generations, we acknowledge the emergence of inquiries regarding the use of the Software Heritage archive for the training of machine learning models, particularly large language models (LLMs) that can automatically generate code to assist with software development tasks.

In alignment with our mission, we believe that LLMs for code should be built in a transparent and respectful way, to the benefit of all. We hence state the following principles for acceptable machine learning use of the Software Heritage archive.

Principles

1. Knowledge derived from the Software Heritage archive must be given back to humanity, rather than monopolized for private gain. The resulting machine learning models must be made available under a suitable open license, together with the documentation and toolings needed to use them.

2. The initial training data extracted from the Software Heritage archive must be fully and precisely identified by, for example, publishing the corresponding SWHID identifiers (note that, in the context of Software Heritage, public availability of the initial training data is given: anyone can obtain it from the archive). This will enable use cases such as: studying biases (fairness), verifying if a code of interest was present in the training data (transparency), and providing appropriate attribution when generated code bears resemblance to training data (credit), among others.

3. Mechanisms should be established, where possible, for authors to exclude their archived code from the training inputs before model training begins.

Building for the Long Term

Building a global infrastructure to stand the test of time is a humbling undertaking. To this end, we rely on the following founding principles

Transparency of code and architecture

Long-term preservation efforts cannot be based on black boxes that hide the process behind closed doors. We are long-time Free/Open Source Software developers and advocates, and our code and specifications are released under a Free and Open Source Software license. We are designing a complex software architecture. Its design and specifications are public.

Collaborative development

The mission of Software Heritage is a humbling undertaking: to succeed, a large collective effort is needed. To foster it, we adopt an open development process, and strive to create an active community around all components of the Software Heritage infrastructure.

Facts and provenance

Following best archival practices, Software Heritage will store full provenance information, in order to be able to always state what was found where and when.
Collaboration and community

Alone we go faster, together we go further.

African saying

A broad community is key for succeeding in the long-term mission undertaken by Software Heritage. This is why we are partnering with private funders around the world to provide grants for experts that are willing to engage with the long-term mission of Software Heritage.

Alfred P. Sloan Foundation

A grant from Alfred P. Sloan Foundation has been awarded to Software Heritage specifically to foster the emergence of a community of expert contributors to increase the coverage of the Software Heritage archive. Seven subgrants have been distributed, resulting in over 300,000 new repositories being archived.

NGI Zero

Four cascading grants from the NLNet Foundation funded work that allowed Software Heritage to save 250,000 endangered Bitbucket repositories, improve its Mercurial loader, get connectors with Nix and Guix, and experiment with the IPFS distributed file system.

NGI Search

The NGI Search project is a European project designed to support entrepreneurs, tech-geeks, developers, and socially engaged people, who are capable of challenging the way we search and discover information and resources on the internet.

You can help

The Software Heritage archive will serve the needs of the many, from cultural institutions to scientists and industries. Everyone can help us achieving these ambitious goals and there are several ways to help.

Become a sponsor

Pursuing our roadmap for the archive requires significant resources. We welcome companies, institutions, and individuals who would like to join our sponsorship program and sustain the Software Heritage project.

Tackle scientific challenges

Building, maintaining, and exploiting the universal source code archive poses relevant scientific challenges. We welcome scientists who would like to contribute to this mission by participating in our research activities.

Code with us

All the software we develop ourselves is open source. We welcome contributors that are willing to delve into it and help us building the many components that are needed to make the archive progress towards the next milestones.

Users

Find all user-related tools and features to guide you in your Software Heritage journey. Connect, share, and engage with the community to enrich and help us build the universal source code archive.

Grantees

Castalia Solutions

Elegant Software Engineering

OCTOBUS

OCaml PRO

YWEAS
Meet our team

Executives
- Roberto Di Cosmo (Founder, CEO)
- Stefano Zacchiroli (Founder, CTO)
- Laetitia Cruse (CTO)

Advisors
- Gérard Berry (French Academy of Science)
- Jean-François Abramatic (EIT)
- Jullia Lawall (Inria)
- Serge Abiteboul (French Academy of Science)

Management
- Benoît Chauvet (Project Manager)
- David Douard (Dev Team Manager)
- Morane Gruenpeter (Head of Open Science)
- Vincent Sellier (Sysadmin Team Manager)

Engineers
- Lunar (Jérémie Bobbio)
- Nicolas Dandrèrimont
- Antoine R. Dumont
- Antoine Lambert
- Valentin Lorentz
- Guillaume Samson
- Jayesh Velayudhan

Open science community manager
- Sabrina Granger
- Communication
- Marla da Silva

Visiting scientists
- Mathilde Fichen
- Interns
- Tommaso Fontana

Visiting hackers
- Kumar Shivendu
- Stephan Sperling
- Paul Wise

At Software Heritage, we understand that success is achievable only through the collective efforts of a diverse community. Since 2020, the ambassador program has been instrumental in nurturing collaboration and promoting the widespread adoption of Software Heritage across various communities. To foster community engagement, and accelerate the adoption of Software Heritage in the many fields where it brings ground breaking benefits, a dedicated ambassador program has been established.

Interested in becoming a Software Heritage ambassador? Please tell us a bit about yourself and your interest in the mission of Software Heritage.

Ambassadors
- Agustín Benito Bethencourt
- Alexis Lebis
- Anna-Lena Lamprecht
- Bertrand Néron
- Borut Kumperscak
- Bostjan Spetic
- Camille Françoise
- Bruno Knebl
- Cécile Arènes
- Dušan Pejić
- Flavia Marzano
- Frédéric Santos
- Gavin Henry
- Gerard Coen
- Cilmary Caillon
- Harish Pillay
- Paolo Vignoli
- Jaime Arias
- Joënia Marques Da Costa
- Julien Caugant
- Malin Sandström
- Maria-Chiara Prodi
- Max Kalik
- Maxence Azouz-Thudderoz
- Mohammad Akhlaghi
- Neal Fultz
- Octavie Valencia
- Pierre Poulain
- Sandrine Layrisse
- Simon Phipps
- Vicky Rampin
- Violaine Louvet
- Wendy Hagenmaier

Becoming an Ambassador
ambassadorprogram@softwareheritage.org
Software Heritage will provide solid, common foundations to serve the different needs of heritage preservation, science, and industry.